

    
      
          
            
  
Welcome to the documentation of pygom

pygom is a package that aims to facilitate the application of ordinary differential equations (ODEs) in the real world, with a focus in epidemiology.  This package helps the end user define their ODE system in an intuitive manner and provides convenience functions - making use of various algebraic and numerical libraries in the backend - that can be used in a straight forward fashion.

This is an open source project hosted on Github [https://github.com/PublicHealthEngland/pygom].
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Getting started


What this package does

The purpose of this package is to allow the end user to easily define a set of
ordinary differential equations (ode) and obtain information about the ode by
simply invoking the the appropriate methods.  Here, we define the set of ode’s
as


\[\frac{\partial \mathbf{x}}{\partial t} = f(\mathbf{x},\boldsymbol{\theta})\]

where \(\mathbf{x} = \left(x_{1},x_{2},\ldots,x_{n}\right)\) is the state
vector with \(d\) state and \(\boldsymbol{\theta}\) the parameters of
\(p\) dimension.  Currently, this package allows the end user to find the
algebraic expression of the ode, Jacobian, gradient and forward sensitivity of
the ode.  A numerical output is given when all the state and parameter values
are provided.   Note that the only important class is DeterministicOde
all the functionality described previously are exposed.

The current plan is to extend the functionality to include


	Solving the ode analytically when it is linear


	Analysis of the system via eigenvalues during the integration


	Detection of DAE







Obtaining the package

The location of the package is current on GitHub and can be pulled via https
from:

https://github.com/PublicHealthEngland/pygom.git





The package is currently as follows:

pygom/
    bin/
    doc/
    pygom/
        loss/
            tests/
        model/
            tests/
        sbml_translate/
        utilR/
    LICENSE.txt
    README.rst
    requirements.txt
    setup.py





with files in each of the three main folder not shown.  You can install the
package via command line:

python setup.py install





or locally on a user level:

python setup.py install --user





Please note that there are current redundant file are kept for development
purposes for the time being.




Testing the package

Testing can be performed prior or after the installation.  Some standard test
files can be found in their respective folder and they can be run in the command
line:

python setup.py test





which can be performed prior to installing the package if desired.







          

      

      

    

  

    
      
          
            
  
Transition Object

The most important part of setting up the model is to correctly define the set odes, which is based solely on the classes defined in transition.  All transitions that gets fed into the ode system needs to be defined as a transition object, Transition.  It takes a total of four input arguments


	The origin state


	Equation that describe the process


	The type of transition


	The destination state




where the first three are mandatory.  To demonstrate, we go back to the SIR model defined previously in the section sir.  Recall that the set of odes are


\[\begin{split}\frac{\partial S}{\partial t} &= -\beta SI \\
\frac{\partial I}{\partial t} &= \beta SI - \gamma I \\
\frac{\partial R}{\partial t} &= \gamma I.\end{split}\]

We can simply define the set of ode, as seen previously, via

In [1]: from pygom import Transition, TransitionType, common_models

In [2]: ode1 = Transition(origin='S', equation='-beta*S*I', transition_type=TransitionType.ODE)

In [3]: ode2 = Transition(origin='I', equation='beta*S*I - gamma*I', transition_type=TransitionType.ODE)

In [4]: ode3 = Transition(origin='R', equation='gamma*I', transition_type=TransitionType.ODE)





Note that we need to state explicitly the type of equation we are inputting, which is simply of type ODE in this case.  We can confirm this has been entered correctly by putting it into DeterministicOde

In [5]: from pygom import DeterministicOde

In [6]: stateList = ['S', 'I', 'R']

In [7]: paramList = ['beta', 'gamma']

In [8]: model = DeterministicOde(stateList,
   ...:                          paramList,
   ...:                          ode=[ode1, ode2, ode3])
   ...: 





and check it

In [9]: model.get_ode_eqn()
Out[9]: 
Matrix([
[         -I*S*beta],
[I*S*beta - I*gamma],
[           I*gamma]])





An alternative print function print_ode() is also available which may be more suitable in other situation.  The default prints the formula in a rendered format and another which prints out the latex format which can be used directly in a latex document.  The latter is useful as it saves typing out the formula twice, once in the code and another in documents.

In [10]: model.print_ode(False)
⎡dS/dt=    -I⋅S⋅β   ⎤
⎢                   ⎥
⎢dI/dt=  I⋅S⋅β - I⋅γ⎥
⎢                   ⎥
⎣dR/dt=      I⋅γ    ⎦

In [11]: model.print_ode(True)
\begin{array}{cc}dS/dt= & - I S \beta\\dI/dt= & I S \beta - I \gamma\\dR/dt= & I \gamma\end{array}





Now we are going to show the different ways of defining the same set of odes.


Defining the equations

Recognizing that the set of odes defining the SIR model is the result of two transitions,


\[\begin{split}S \rightarrow I &= \beta SI \\
I \rightarrow R &= \gamma I\end{split}\]

where \(S \rightarrow I\) denotes a transition from state \(S\) to state \(I\).  Therefore, we can simply define our model by these two transition, but now these two transition needs to be inputted via the transition argument instead of the ode argument.  Note that we are initializing the model using a different class, because the stochastic implementation has more operation on transitions.

In [12]: from pygom import SimulateOde

In [13]: t1 = Transition(origin='S', destination='I', equation='beta*S*I', transition_type=TransitionType.T)

In [14]: t2 = Transition(origin='I', destination='R', equation='gamma*I', transition_type=TransitionType.T)

In [15]: modelTrans = SimulateOde(stateList,
   ....:                          paramList,
   ....:                          transition=[t1, t2])
   ....: 

In [16]: modelTrans.get_ode_eqn()
Out[16]: 
Matrix([
[         -I*S*beta],
[I*S*beta - I*gamma],
[           I*gamma]])





We can see that the resulting ode is exactly the same, as expected.  The transition matrix that defines this process can easily be visualized using graphviz.  Because only certain renderer permit the use of sub and superscript, operators such as \(**\) are left as they are in the equation.

In [17]: import matplotlib.pyplot as plt

In [18]: f = plt.figure()

In [19]: modelTrans.get_transition_matrix()
Out[19]: 
Matrix([
[0, I*S*beta,       0],
[0,        0, I*gamma],
[0,        0,       0]])

In [20]: dot = modelTrans.get_transition_graph()





[image: _images/sir_transition_graph.png]
If we put in via the wrong argument like below (not run), then an error will appear.

In [21]: # modelTrans = DeterministicOde(stateList, paramList, ode=[t1, t2])





because TranstionType was defined explicitly as a transition instead of an ode.  The same can be observed when the wrong TransitionType is used for any of the input argument.

This though, only encourages us to define the transitions carefully.  We can also pretend that the set of odes are in fact just a set of birth process

In [22]: birth1 = Transition(origin='S', equation='-beta*S*I', transition_type=TransitionType.B)

In [23]: birth2 = Transition(origin='I', equation='beta*S*I - gamma*I', transition_type=TransitionType.B)

In [24]: birth3 = Transition(origin='R', equation='gamma*I', transition_type=TransitionType.B)

In [25]: modelBirth = DeterministicOde(stateList,
   ....:                               paramList,
   ....:                               birth_death=[birth1, birth2, birth3])
   ....: 

In [26]: modelBirth.get_ode_eqn()
Out[26]: 
Matrix([
[         -I*S*beta],
[I*S*beta - I*gamma],
[           I*gamma]])





which will yield the same set result.  Alternatively, we can use the negative of the equation but set it to be a death process.  For example, we multiply the equations for state \(S\) and \(R\) with a negative sign and set the transition type to be a death process instead.

In [27]: death1 = Transition(origin='S', equation='beta*S*I', transition_type=TransitionType.D)

In [28]: birth2 = Transition(origin='I', equation='beta*S*I - gamma*I', transition_type=TransitionType.B)

In [29]: death3 = Transition(origin='R', equation='-gamma*I', transition_type=TransitionType.D)

In [30]: modelBD = DeterministicOde(stateList,
   ....:                            paramList,
   ....:                            birth_death=[death1, birth2, death3])
   ....: 

In [31]: modelBD.get_ode_eqn()
Out[31]: 
Matrix([
[         -I*S*beta],
[I*S*beta - I*gamma],
[           I*gamma]])





We can see that all the above ways yield the same set of ode at the end.




Model Addition

Because we allow the separation of transitions between states and birth/death processes, the birth/death processes can be added later on.

In [32]: modelBD2 = modelTrans

In [33]: modelBD2.param_list = paramList + ['mu', 'B']

In [34]: birthDeathList = [Transition(origin='S', equation='B', transition_type=TransitionType.B),
   ....:                   Transition(origin='S', equation='mu*S', transition_type=TransitionType.D),
   ....:                   Transition(origin='I', equation='mu*I', transition_type=TransitionType.D)]
   ....: 

In [35]: modelBD2.birth_death_list = birthDeathList

In [36]: modelBD2.get_ode_eqn()
Out[36]: 
Matrix([
[      B - I*S*beta - S*mu],
[I*S*beta - I*gamma - I*mu],
[                  I*gamma]])





So modeling can be done in stages.  Start with a standard closed system and extend it with additional flows that interact with the environment.




Transition type

There are currently four different type of transitions allowed, which is defined in an enum class also located in transition.  The four types are B, D, ODE and T, where they represent different type of process with explanation in their corresponding value.

In [37]: from pygom import transition

In [38]: for i in transition.TransitionType:
   ....:     print(str(i) + " = " + i.value)
   ....: 
TransitionType.B = Birth process
TransitionType.D = Death process
TransitionType.T = Between states
TransitionType.ODE = ODE _equation





Each birth process are added to the origin state while each death process are deducted from the state, i.e. added to the state after multiplying with a negative sign.  An ode type is also added to the state and we forbid the number of input ode to be greater than the number of state inputted.







          

      

      

    

  

    
      
          
            
  
Stochastic representation of ode

There are multiple interpretation of stochasticity of a deterministic ode.  We have implemented two of the most common interpretation; when the parameters are realizations of some underlying distribution, and when we have a so called chemical master equation where each transition represent a jump.  Again, we use the standard SIR example as previously seen in ref:sir.

In [1]: from pygom import SimulateOde, Transition, TransitionType

In [2]: import matplotlib.pyplot as plt

In [3]: import numpy as np

In [4]: x0 = [1, 1.27e-6, 0]

In [5]: t = np.linspace(0, 150, 100)

In [6]: stateList = ['S', 'I', 'R']

In [7]: paramList = ['beta', 'gamma']

In [8]: transitionList = [
   ...:                   Transition(origin='S', destination='I', equation='beta*S*I', transition_type=TransitionType.T),
   ...:                   Transition(origin='I', destination='R', equation='gamma*I', transition_type=TransitionType.T)
   ...:                   ]
   ...: 

In [9]: odeS = SimulateOde(stateList, paramList, transition=transitionList)

In [10]: odeS.parameters = [0.5, 1.0/3.0]

In [11]: odeS.initial_values = (x0, t[0])

In [12]: solutionReference = odeS.integrate(t[1::], full_output=False)






Stochastic Parameter

In our first scenario, we assume that the parameters follow some underlying distribution.  Given that both \(\beta\) and \(\gamma\) in our SIR model has to be non-negative, it seemed natural to use a Gamma distribution.  We make use of the familiar syntax from R [http://www.r-project.org/] to define our distribution.  Unfortunately, we have to define it via a tuple, where the first is the function handle (name) while the second the parameters.  Note that the parameters can be defined as either a dictionary or as the same sequence as R [http://www.r-project.org/], which is the shape then the rate in the Gamma case.

In [13]: from pygom.utilR import rgamma

In [14]: d = dict()

In [15]: d['beta'] = (rgamma,{'shape':100.0, 'rate':200.0})

In [16]: d['gamma'] = (rgamma,(100.0, 300.0))

In [17]: odeS.parameters = d

In [18]: Ymean, Yall = odeS.simulate_param(t[1::], 10, full_output=True)





Note that a message is printed above where it is trying to connect to an mpi backend, as our module has the capability to compute in parallel using the IPython.  We have simulated a total of 10 different solutions using different parameters, the plots can be seen below

In [19]: f, axarr = plt.subplots(1,3)

In [20]: for solution in Yall:
   ....:     axarr[0].plot(t, solution[:,0])
   ....:     axarr[1].plot(t, solution[:,1])
   ....:     axarr[2].plot(t, solution[:,2])
   ....: 

In [21]: plt.show()

In [22]: plt.close()





[image: _images/stochastic_param_all.png]
We then see how the expected results, using the sample average of the simulations


\[\tilde{x}(T) = \mathbb{E}\left[ \int_{t_{0}}^{T} f(\theta,x,t) dt \right]\]

differs from the reference solution


\[\hat{x}(T) = \int_{t_{0}}^{T} f(\mathbb{E}\left[ \theta \right],x,t) dt\]

In [23]: f, axarr = plt.subplots(1,3)

In [24]: for i in range(3): axarr[i].plot(t, Ymean[:,i] - solutionReference[:,i])

In [25]: plt.show()

In [26]: plt.close()





[image: _images/stochastic_param_compare.png]
The difference is relatively large especially for the \(S\) state.  We can decrease this difference as we increase the number of simulation, and more sophisticated sampling method for the generation of random variables can also decrease the difference.

In addition to using the built-in functions to represent stochasticity, we can also use standard frozen distributions from scipy.  Note that it must be a frozen distribution as that is the only for the parameters of the distributions to propagate through the model.

In [27]: import scipy.stats as st

In [28]: d = dict()

In [29]: d['beta'] = st.gamma(a=100.0, scale=1.0/200.0)

In [30]: d['gamma'] = st.gamma(a=100.0, scale=1.0/300.0)

In [31]: odeS.parameters = d





Obviously, there may be scenarios where only some of the parameters are stochastic.  Let’s say that the \(\gamma\) parameter is fixed at \(1/3\), then simply replace the distribution information with a scalar.  A quick visual inspection at the resulting plot suggests that the system of ODE potentially has less variation when compared to the case where both parameters are stochastic.

In [32]: d['gamma'] = 1.0/3.0

In [33]: odeS.parameters = d

In [34]: YmeanSingle, YallSingle = odeS.simulate_param(t[1::], 5, full_output=True)

In [35]: f, axarr = plt.subplots(1,3)

In [36]: for solution in YallSingle:
   ....:     axarr[0].plot(t,solution[:,0])
   ....:     axarr[1].plot(t,solution[:,1])
   ....:     axarr[2].plot(t,solution[:,2])
   ....: 

In [37]: plt.show()

In [38]: plt.close()





[image: _images/stochastic_param_single.png]



Continuous Markov Representation

Another common method of introducing stochasticity into a set of ode is by assuming each movement in the system is a result of a jump process.  More concretely, the probabilty of a move for transition \(j\) is governed by an exponential distribution such that


\[\Pr(\text{process $j$ jump within time } \tau) = \lambda_{j} e^{-\lambda_{j} \tau},\]

where \(\lambda_{j}\) is the rate of transition for process \(j\) and \(\tau\) the time elapsed after current time \(t\).

A couple of the commmon implementation for the jump process have been implemented where two of them are used during a normal simulation; the first reaction method [Gillespie1977] and the \(\tau\)-Leap method [Cao2006].  The two changes interactively depending on the size of the states.

In [39]: x0 = [2362206.0, 3.0, 0.0]

In [40]: stateList = ['S', 'I', 'R']

In [41]: paramList = ['beta', 'gamma', 'N']

In [42]: transitionList = [
   ....:                   Transition(origin='S', destination='I', equation='beta*S*I/N', transition_type=TransitionType.T),
   ....:                   Transition(origin='I', destination='R', equation='gamma*I', transition_type=TransitionType.T)
   ....:                   ]
   ....: 

In [43]: odeS = SimulateOde(stateList, paramList, transition=transitionList)

In [44]: odeS.parameters = [0.5, 1.0/3.0, x0[0]]

In [45]: odeS.initial_values = (x0, t[0])

In [46]: solutionReference = odeS.integrate(t[1::])

In [47]: simX, simT = odeS.simulate_jump(t[1:10], 10, full_output=True)

In [48]: f, axarr = plt.subplots(1, 3)

In [49]: for solution in simX:
   ....:     axarr[0].plot(t[:9], solution[:,0])
   ....:     axarr[1].plot(t[:9], solution[:,1])
   ....:     axarr[2].plot(t[:9], solution[:,2])
   ....: 

In [50]: plt.show()

In [51]: plt.close()





[image: _images/stochastic_process.png]
Above, we see ten different simulation, again using the SIR model but without standardization of the initial conditions.  We restrict our time frame to be only the first 10 time points so that the individual changes can be seen more clearly above.  If we use the same time frame as the one used previously for the deterministic system (as shown below), the trajectories are smoothed out and we no longer observe the jumps.  Looking at the raw trajectories of the ODE below, it is obvious that the mean from a jump process is very different to the deterministic solution.  The reason behind this is that the jump process above was able to fully remove all the initial infected individuals before any new ones.

In [52]: simX,simT = odeS.simulate_jump(t, 5, full_output=True)

In [53]: simMean = np.mean(simX, axis=0)

In [54]: f, axarr = plt.subplots(1,3)

In [55]: for solution in simX:
   ....:     axarr[0].plot(t, solution[:,0])
   ....:     axarr[1].plot(t, solution[:,1])
   ....:     axarr[2].plot(t, solution[:,2])
   ....: 

In [56]: plt.show()

In [57]: plt.close()





[image: _images/stochastic_process_compare_large_n_curves.png]



Repeatable Simulation

One of the possible use of compartmental models is to generate forecasts.  Although most of the time the requirement would be to have (at least point-wise) convergence in the limit, reproducibility is also important.  For both types of interpretation explained above, we have given the package the capability to repeat the simulations by setting a seed.  When the assumption is that the parameters follows some sort of distribution, we simply set the seed which governs the global state of the random number generator.

In [58]: x0 = [2362206.0, 3.0, 0.0]

In [59]: odeS = SimulateOde(stateList, paramList, transition=transitionList)

In [60]: d = {'beta': st.gamma(a=100.0, scale=1.0/200.0), 'gamma': st.gamma(a=100.0, scale=1.0/300.0), 'N': x0[0]}

In [61]: odeS.parameters = d

In [62]: odeS.initial_values = (x0, t[0])

In [63]: Ymean, Yall = odeS.simulate_param(t[1::], 10, full_output=True)

In [64]: np.random.seed(1)

In [65]: Ymean1, Yall1 = odeS.simulate_param(t[1::], 10, full_output=True)

In [66]: np.random.seed(1)

In [67]: Ymean2, Yall2 = odeS.simulate_param(t[1::], 10, full_output=True)

In [68]: sim_diff = [np.linalg.norm(Yall[i] - yi) for i, yi in enumerate(Yall1)]

In [69]: sim_diff12 = [np.linalg.norm(Yall2[i] - yi) for i, yi in enumerate(Yall1)]

In [70]: print("Different in the simulations and the mean: (%s, %s) " % (np.sum(sim_diff), np.sum(np.abs(Ymean1 - Ymean))))
Different in the simulations and the mean: (99161444.47046044, 19312939.804206304) 

In [71]: print("Different in the simulations and the mean using same seed: (%s, %s) " % (np.sum(sim_diff12), np.sum(np.abs(Ymean2 - Ymean1))))
Different in the simulations and the mean using same seed: (0.0, 0.0) 





In the alternative interpretation, setting the global seed is insufficient.  Unlike simulation based on the parameters, where we can pre-generate all the parameter values and send them off to individual processes in the parallel backend, this is prohibitive here.  In a nutshell, the seed does not propagate when using a parallel backend because each integration requires an unknown number of random samples.  Therefore, we have an additional flag parallel in the function signature.  By ensuring that the computation runs in serial, we can make use of the global seed and generate identical runs.

In [72]: x0 = [2362206.0, 3.0, 0.0]

In [73]: odeS = SimulateOde(stateList, paramList, transition=transitionList)

In [74]: odeS.parameters = [0.5, 1.0/3.0, x0[0]]

In [75]: odeS.initial_values = (x0, t[0])

In [76]: simX, simT = odeS.simulate_jump(t[1:10], 10, parallel=False, full_output=True)

In [77]: np.random.seed(1)

In [78]: simX1, simT1 = odeS.simulate_jump(t[1:10], 10, parallel=False, full_output=True)

In [79]: np.random.seed(1)

In [80]: simX2, simT2 = odeS.simulate_jump(t[1:10], 10, parallel=False, full_output=True)

In [81]: sim_diff = [np.linalg.norm(simX[i] - x1) for i, x1 in enumerate(simX1)]

In [82]: sim_diff12 = [np.linalg.norm(simX2[i] - x1) for i, x1 in enumerate(simX1)]

In [83]: print("Difference in simulation: %s" % np.sum(np.abs(sim_diff)))
Difference in simulation: 2534.4614923250074

In [84]: print("Difference in simulation using same seed: %s" % np.sum(np.abs(sim_diff12)))
Difference in simulation using same seed: 0.0











          

      

      

    

  

    
      
          
            
  
Convert ODE into transitions

As seen previously in Transition Object, we can define the model via the transitions or explicitly as ODEs.  There are times when we all just want to test out some model in a paper and the only available information are the ODEs themselves.  Even though we know that the ODEs come from some underlying transitions, breaking them down can be a time consuming process.  We provide the functionalities to do this automatically.



	Simple Problem

	ODE With Birth and Death Process

	Hard Problem









          

      

      

    

  

    
      
          
            
  
Simple Problem

For a simple problem, we consider the SIR model defined by


\[\begin{split}\frac{dS}{dt} &= -\beta SI \\
\frac{dI}{dt} &= \beta SI - \gamma I \\
\frac{dR}{dt} &= \gamma I.\end{split}\]

which consists of two transitions

[image: digraph SIR_Model {         rankdir=LR;         size="8"         node [shape = circle];         S -> I [ label = "&beta;SI" ];         I -> R [ label = "&gamma;I" ]; }]

Let’s define this using the code block below

In [1]: from pygom import SimulateOde, Transition, TransitionType

In [2]: ode1 = Transition(origin='S', equation='-beta*S*I', transition_type=TransitionType.ODE)

In [3]: ode2 = Transition(origin='I', equation='beta*S*I - gamma*I', transition_type=TransitionType.ODE)

In [4]: ode3 = Transition(origin='R', equation='gamma*I', transition_type=TransitionType.ODE)

In [5]: stateList = ['S', 'I', 'R']

In [6]: paramList = ['beta', 'gamma']

In [7]: ode = SimulateOde(stateList,
   ...:                   paramList,
   ...:                   ode=[ode1, ode2, ode3])
   ...: 

In [8]: ode.get_transition_matrix()
Out[8]: 
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])





and the last line shows that the transition matrix is empty.  This is the expected result because SimulateOdeModel was not initialized using transitions.  We populate the transition matrix below and demonstrate the difference.

In [9]: ode = ode.get_unrolled_obj()

In [10]: ode.get_transition_matrix()
Out[10]: 
Matrix([
[0, I*S*beta,       0],
[0,        0, I*gamma],
[0,        0,       0]])









          

      

      

    

  

    
      
          
            
  
ODE With Birth and Death Process

We follow on from the SIR model of Simple Problem but with additional birth and death processes.


\[\begin{split}\frac{dS}{dt} &= -\beta SI + B - \mu S\\
\frac{dI}{dt} &= \beta SI - \gamma I - \mu I\\
\frac{dR}{dt} &= \gamma I.\end{split}\]

which consists of two transitions and three birth and death process

[image: digraph SIR_Model {         rankdir=LR;         size="8"         node [shape = circle];         S -> I [ label = "&beta;SI" ];         I -> R [ label = "&gamma;I" ]; B [height=0 margin=0 shape=plaintext width=0]; B -> S; "S**2*&mu;" [height=0 margin=0 shape=plaintext width=0]; S -> "S**2*&mu;"; "I*&mu;" [height=0 margin=0 shape=plaintext width=0];         I -> "I*&mu;"; }]

Let’s define this in terms of ODEs, and unroll it back to the individual processes.

In [1]: from pygom import Transition, TransitionType, SimulateOde, common_models

In [2]: import matplotlib.pyplot as plt

In [3]: stateList = ['S', 'I', 'R']

In [4]: paramList = ['beta', 'gamma', 'B', 'mu']

In [5]: odeList = [
   ...:            Transition(origin='S',
   ...:                       equation='-beta*S*I + B - mu*S',
   ...:                       transition_type=TransitionType.ODE),
   ...:            Transition(origin='I',
   ...:                       equation='beta*S*I - gamma*I - mu*I',
   ...:                       transition_type=TransitionType.ODE),
   ...:            Transition(origin='R',
   ...:                       equation='gamma*I',
   ...:                       transition_type=TransitionType.ODE)
   ...:            ]
   ...: 

In [6]: ode = SimulateOde(stateList, paramList, ode=odeList)

In [7]: ode2 = ode.get_unrolled_obj()

In [8]: f = plt.figure()

In [9]: ode2.get_transition_graph()
Out[9]: <graphviz.dot.Digraph at 0x7fcf95da1c88>

In [10]: plt.close()





[image: ../_images/sir_unrolled_transition_graph.png]




          

      

      

    

  

    
      
          
            
  
Hard Problem

Now we turn to a harder problem that does not have a one to one mapping between all the transitions and the terms in the ODEs.  We use the model in Influenza_SLIARN(), defined by


\[\begin{split}\frac{dS}{dt} &= -S \beta (I + \delta A) \\
\frac{dL}{dt} &= S \beta (I + \delta A) - \kappa L \\
\frac{dI}{dt} &= p \kappa L - \alpha I \\
\frac{dA}{dt} &= (1 - p) \kappa L - \eta A \\
\frac{dR}{dt} &= f \alpha I + \eta A \\
\frac{dN}{dt} &= -(1 - f) \alpha I.\end{split}\]

The outflow of state L, \(\kappa L\), is composed of two transitions, one to I and the other to A but the ode of L only reflects the total flow going out of the state.  Same can be said for state I, where the flow \(\alpha I\) goes to both R and N.  Graphically, it is a rather simple process as shown below.

[image: digraph SLIARD_Model {         labelloc = "t";     label = "Original transitions";         rankdir=LR;         size="8"         node [shape = circle];         S -> L [ label = "-S&beta;(I + &delta;A)/N" ];         L -> I [ label = "&kappa;Lp" ];         L -> A [ label = "&kappa;L(1-p)" ];         I -> R [ label = "&alpha;If" ];         I -> D [ label = "&alpha;I(1-f)" ];         A -> R [ label = "&eta;A" ]; }]

We slightly change the model by introducing a new state D to convert it into a closed system.  The combination of state D and N is a constant, the total population.  So we can remove N and this new system consist of six transitions.  We define them explicitly as ODEs and unroll them into transitions.

In [1]: from pygom import SimulateOde, Transition, TransitionType

In [2]: stateList = ['S', 'L', 'I', 'A', 'R', 'D']

In [3]: paramList = ['beta', 'p', 'kappa', 'alpha', 'f', 'delta', 'epsilon', 'N']

In [4]: odeList = [
   ...:            Transition(origin='S', equation='- beta*S/N*(I + delta*A)', transition_type=TransitionType.ODE),
   ...:            Transition(origin='L', equation='beta*S/N*(I + delta*A) - kappa*L', transition_type=TransitionType.ODE),
   ...:            Transition(origin='I', equation='p*kappa*L - alpha*I', transition_type=TransitionType.ODE),
   ...:            Transition(origin='A', equation='(1 - p)*kappa * L - epsilon*A', transition_type=TransitionType.ODE),
   ...:            Transition(origin='R', equation='f*alpha*I + epsilon*A', transition_type=TransitionType.ODE),
   ...:            Transition(origin='D', equation='(1 - f)*alpha*I', transition_type=TransitionType.ODE) ]
   ...: 

In [5]: ode = SimulateOde(stateList, paramList, ode=odeList)

In [6]: ode.get_transition_matrix()
Out[6]: 
Matrix([
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])

In [7]: ode2 = ode.get_unrolled_obj()

In [8]: ode2.get_transition_matrix()
Out[8]: 
Matrix([
[0, A*S*beta*delta/N + I*S*beta/N,         0,                    0,         0,                    0],
[0,                             0, L*kappa*p, -L*kappa*p + L*kappa,         0,                    0],
[0,                             0,         0,                    0, I*alpha*f, -I*alpha*f + I*alpha],
[0,                             0,         0,                    0, A*epsilon,                    0],
[0,                             0,         0,                    0,         0,                    0],
[0,                             0,         0,                    0,         0,                    0]])

In [9]: ode2.get_ode_eqn()
Out[9]: 
Matrix([
[         -A*S*beta*delta/N - I*S*beta/N],
[A*S*beta*delta/N + I*S*beta/N - L*kappa],
[                   -I*alpha + L*kappa*p],
[       -A*epsilon - L*kappa*p + L*kappa],
[                  A*epsilon + I*alpha*f],
[                   -I*alpha*f + I*alpha]])





After unrolling the odes, we have the following transition graph

In [10]: ode2.get_transition_graph()
Out[10]: <graphviz.dot.Digraph at 0x7fcf94efca90>

In [11]: plt.close()

In [12]: print(sum(ode.get_ode_eqn() - ode2.get_ode_eqn()).simplify()) # difference
0





[image: ../_images/sir_unrolled_transition_graph_hard.png]
which is exactly the same apart from slightly weird arrangement of symbols in some of the equations.  The last line with a value of zero also reaffirms the result.





          

      

      

    

  

    
      
          
            
  
Solving Boundary Value Problems

In addition to finding solutions for an IVP and estimate the unknown parameters, this package also allows you to solve BVP with a little bit of imagination.  Here, we are going to show how a BVP can be solved by treating it as a parameter estimation problem.  Essentially, a shooting method where the first boundary condition defines the initial condition of an IVP and the second boundary condition is an observation.  Two examples, both from MATLAB 1, will be shown here.


Simple model 1

We are trying to find the solution to the second order differential equation


\[\nabla^{2} y + |y| = 0\]

subject to the boundary conditions \(y(0) = 0\) and \(y(4) = -2\).  Convert this into a set of first order ODE


\[\begin{split}\frac{d y_{0}}{dt} &= y_{1} \\
\frac{d y_{1}}{dt} &= -|y_{0}|\end{split}\]

using an auxiliary variable \(y_{1} = \nabla y\) and \(y_{0} = y\).  Setting up the system below

In [1]: from pygom import Transition, TransitionType, DeterministicOde, SquareLoss

In [2]: import matplotlib.pyplot as plt

In [3]: stateList = ['y0', 'y1']

In [4]: paramList = []

In [5]: ode1 = Transition(origin='y0',
   ...:                   equation='y1',
   ...:                   transition_type=TransitionType.ODE)
   ...: 

In [6]: ode2 = Transition(origin='y1',
   ...:                   equation='-abs(y0)',
   ...:                   transition_type=TransitionType.ODE)
   ...: 

In [7]: model = DeterministicOde(stateList,
   ...:                          paramList,
   ...:                          ode=[ode1, ode2])
   ...: 

In [8]: model.get_ode_eqn()
Out[8]: 
Matrix([
[      y1],
[-Abs(y0)]])





We check that the equations are correct before proceeding to set up our loss function.

In [9]: import numpy

In [10]: from scipy.optimize import minimize

In [11]: initialState = [0.0, 1.0]

In [12]: t = numpy.linspace(0, 4, 100)

In [13]: model.initial_values = (initialState, t[0])

In [14]: solution = model.integrate(t[1::])

In [15]: f = plt.figure()

In [16]: model.plot()

In [17]: plt.close()





[image: _images/bvp1_random_guess_plot.png]
Setting up the second boundary condition \(y(4) = -2\) is easy, because that
is just a single observation attached to the state \(y_{1}\).  Enforcing the
first boundary condition requires us to set it as the initial condition.
Because the condition only states that \(y(0) = 0\), the starting value of
the other state \(y_1\) is free.  We let our loss object know that it is
free through the targetState input argument.

In [18]: theta = [0.0]

In [19]: obj = SquareLoss(theta=theta,
   ....:                  ode=model,
   ....:                  x0=initialState,
   ....:                  t0=t[0],
   ....:                  t=t[-1],
   ....:                  y=[-2],
   ....:                  state_name=['y0'],
   ....:                  target_state=['y1'])
   ....: 

In [20]: thetaHat = minimize(fun=obj.costIV, x0=[0.0])

In [21]: print(thetaHat)
      fun: 1.8896300643324946e-11
 hess_inv: array([[0.51403884]])
      jac: array([-8.6096985e-06])
  message: 'Optimization terminated successfully.'
     nfev: 18
      nit: 5
     njev: 6
   status: 0
  success: True
        x: array([2.06657723])

In [22]: model.initial_values = ([0.0] + thetaHat['x'].tolist(), t[0])

In [23]: solution = model.integrate(t[1::])

In [24]: f = plt.figure()

In [25]: model.plot()

In [26]: plt.close()





[image: _images/bvp1_solution_plot.png]
We are going to visualize the solution, and also check the boundary condition.  The first became our initial condition, so it is always satisfied and only the latter is of concern, which is zero (subject to numerical error) from thetaHat.




Simple model 2

Our second example is different as it involves an actual parameter and also time.  We have the Mathieu’s Equation


\[\nabla^{2} y + \left(p - 2q \cos(2x)\right)y = 0\]

and the aim is to compute the fourth eigenvalue \(q=5\).  There are three boundary conditions


\[\nabla y(0) = 0, \quad \nabla y(\pi) = 0, \quad y(0) = 1\]

and we aim to solve it by converting it to a first order ODE and tackle it as an IVP.  As our model object does not allow the use of the time component in the equations, we introduce a anxiliary state \(\tau\) that replaces time \(t\).  Rewrite the equations using \(y_{0} = y, y_{1} = \nabla y\) and define our model as

In [27]: stateList = ['y0', 'y1', 'tau']

In [28]: paramList = ['p']

In [29]: ode1 = Transition('y0', 'y1', TransitionType.ODE)

In [30]: ode2 = Transition('y1', '-(p - 2*5*cos(2*tau))*y0', TransitionType.ODE)

In [31]: ode3 = Transition('tau', '1', TransitionType.ODE)

In [32]: model = DeterministicOde(stateList, paramList, ode=[ode1, ode2, ode3])

In [33]: theta = [1.0, 1.0, 0.0]

In [34]: p = 15.0

In [35]: t = numpy.linspace(0, numpy.pi)

In [36]: model.parameters = [('p',p)]

In [37]: model.initial_values = (theta, t[0])

In [38]: solution = model.integrate(t[1::])

In [39]: f = plt.figure()

In [40]: model.plot()

In [41]: plt.close()





[image: _images/bvp2_random_guess_plot.png]
Now we are ready to setup the estimation.  Like before, we setup the second boundary condition by pretending that it is an observation.  We have all the initial conditions defined by the first boundary condition

In [42]: obj = SquareLoss(15.0, model, x0=[1.0, 0.0, 0.0], t0=0.0, t=numpy.pi, y=0.0, state_name='y1')

In [43]: xhatObj = minimize(obj.cost,[15])

In [44]: print(xhatObj)
      fun: 8.620622377669915e-17
 hess_inv: array([[0.41085766]])
      jac: array([-2.35234683e-09])
  message: 'Optimization terminated successfully.'
     nfev: 27
      nit: 5
     njev: 9
   status: 0
  success: True
        x: array([17.09658168])

In [45]: model.parameters = [('p', xhatObj['x'][0])]

In [46]: model.initial_values = ([1.0, 0.0, 0.0], t[0])

In [47]: solution = model.integrate(t[1::])

In [48]: f = plt.figure()

In [49]: model.plot()

In [50]: plt.close()





[image: _images/bvp2_solution_plot.png]
The plot of the solution shows the path that satisfies all boundary condition.  The last subplot is time which obvious is redundant here but the DeterministicOde.plot() method is not yet able to recognize the time component.  Possible speed up can be achieved through the use of derivative information or via root finding method that tackles the gradient directly, instead of the cost function.

Reference


	1

	http://uk.mathworks.com/help/matlab/ref/bvp4c.html











          

      

      

    

  

    
      
          
            
  
Example: Parameter Estimation 1


Estimation under square loss

To ease the estimation process when given data, a separate module ode_loss has been constructed for observations coming from a single state.  We demonstrate how to do it via two examples, first, a standard SIR model, then the Legrand SEIHFR model from [Legrand2007] used for Ebola in estimate2.


SIR Model

We set up an SIR model as seen previously in sir.

In [1]: from pygom import SquareLoss, common_models

In [2]: import numpy

In [3]: import scipy.integrate

In [4]: import matplotlib.pyplot

In [5]: # Again, standard SIR model with 2 parameter.  See the first script!

In [6]: # define the parameters

In [7]: paramEval = [('beta',0.5), ('gamma',1.0/3.0)]

In [8]: # initialize the model

In [9]: ode = common_models.SIR(paramEval)





and we assume that we have perfect information about the \(R\) compartment.

In [10]: x0 = [1, 1.27e-6, 0]

In [11]: # Time, including the initial time t0 at t=0

In [12]: t = numpy.linspace(0, 150, 1000)

In [13]: # Standard.  Find the solution.

In [14]: solution = scipy.integrate.odeint(ode.ode, x0, t)

In [15]: y = solution[:,1:3].copy()





Initialize the class with some initial guess

In [16]: # our initial guess

In [17]: theta = [0.2, 0.2]

In [18]: objSIR = SquareLoss(theta, ode, x0, t[0], t[1::], y[1::,:], ['I','R'])





Note that we need to provide the initial values, \(x_{0}\) and \(t_{0}\) differently to the observations \(y\) and the corresponding time \(t\).  Additionally, the state which the observation lies needs to be specified.  Either a single state, or multiple states are allowed, as seen above.




Difference in gradient

We have provided two different ways of obtaining the gradient, these are explained in gradient in a bit more detail.  First, lets see how similar the output of the two methods are

In [19]: objSIR.sensitivity()
Out[19]: array([-0.95621274,  0.87448359])

In [20]: objSIR.adjoint()
Out[20]: array([-0.95498053,  0.87325191])





and the time required to obtain the gradient for the SIR model under \(\theta = (0.2,0.2)\), previously entered.

In [21]: %timeit objSIR.sensitivity()
33.8 ms +- 555 us per loop (mean +- std. dev. of 7 runs, 10 loops each)

In [22]: %timeit objSIR.adjoint()
1.29 s +- 27.1 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)





Obviously, the amount of time taken for both method is dependent on the number of observations as well as the number of states.  The effect on the adjoint method as the number of observations differs can be quite evident.  This is because the adjoint method is under a discretization which loops in Python where as the forward sensitivity equations are solved simply via an integration.  As the number of observation gets larger, the affect of the Python loop becomes more obvious.

Difference in gradient is larger when there are less observations.  This is because the adjoint method use interpolations on the output of the ode between each consecutive time points.  Given solution over the same length of time, fewer discretization naturally leads to a less accurate interpolation.  Note that the interpolation is currently performed using univaraite spline, due to the limitation of python packages.  Ideally, one would prefer to use an (adaptive) Hermite or Chebyshev interpolation.  Note how we ran the two gradient functions once before timing it, that is because we only find the properties (Jacobian, gradient) of the ode during runtime.




Optimized result

Then standard optimization procedures with some suitable initial guess should yield the correct result.   It is important to set the boundaries for compartmental models as we know that all the parameters are strictly positive.  We put a less restrictive inequality here for demonstration purpose.

In [23]: # what we think the bounds are

In [24]: boxBounds = [(0.0,2.0),(0.0,2.0)]





Then using the optimization routines in scipy.optimize [https://docs.scipy.org/doc/scipy/reference/optimize.html#module-scipy.optimize], for example, the SLSQP method with the gradient obtained by forward sensitivity.

In [25]: from scipy.optimize import minimize

In [26]: res = minimize(fun=objSIR.cost,
   ....:                jac=objSIR.sensitivity,
   ....:                x0=theta,
   ....:                bounds=boxBounds,
   ....:                method='SLSQP')
   ....: 

In [27]: print(res)
     fun: 6.107148148593866e-07
     jac: array([ 0.16105372, -0.17475277])
 message: 'Optimization terminated successfully.'
    nfev: 18
     nit: 10
    njev: 10
  status: 0
 success: True
       x: array([0.5000679 , 0.33337421])





Other methods available in scipy.optimize.minimize() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize] can also be used, such as the L-BFGS-B and TNC.  We can also use methods that accepts the exact Hessian such as trust-ncg but that should not be necessary most of the time.









          

      

      

    

  

    
      
          
            
  
Pre-defined Example common_models

We have defined a set of models common_models, most of them commonly used in epidemiology.  They are there as examples and also save time for end users.  Most of them are of the compartmental type, and we use standard naming conventions i.e. S = Susceptible, E = Exposed, I = Infectious, R = Recovered.  Extra state symbol will be introduced when required.








          

      

      

    

  

    
      
          
            
  
Frequent asked questions


Code runs slowly

This is because the package is not optimized for speed.  Although the some of the main functions are lambdified using sympy [https://docs.sympy.org/latest/modules/matrices/immutablematrices.html#module-sympy] or compiled against cython when available, there are many more optimization that can be done.  One example is the lines:

in DeterministicOde.evalSensitivity().  The first two operations can be inlined into the third and the third line itself can be rewritten as:

and save the explicit copy operation by numpy [https://numpy.org/doc/stable/reference/index.html#module-numpy] when making A. If desired, we could have also made used of the numexpr package that provides further speed up on elementwise operations in place of numpy.




Why not compile the numeric computation form sympy against Theano

Setup of the package has been simplified as much as possible.  If you look closely enough, you will realize that the current code generation only uses cython and not f2py.  This is because we are not prepared to do all the system checks, i.e. does a fortran compiler exist, is gcc installed, was python built as a shared library etc.  We are very much aware of the benefit, especially considering the possibility of GPU computation in theano.




Why not use mpmath library throughout?

This is because we have a fair number of operations that depends on scipy [https://docs.scipy.org/doc/scipy/reference/index.html#module-scipy].  Obviously, we can solve ode using mpmath and do standard linear algebra.  Unfortunately, optimization and statistics packages and routine are mostly based on numpy [https://numpy.org/doc/stable/reference/index.html#module-numpy].




Computing the gradient using SquareLoss is slow

It will always be slow on the first operation.  This is due to the design where the initialization of the class is fast and only find derivative information/compile function during runtime.  After the first calculation, things should be significantly faster.

Why some of my code is not a fortran object?

When we detec either a \(\exp\) or a \(\log\) in the equations, we automatically force the compile to use mpmath to ensure that we obtain the highest precision.  To turn this on/off will be considered as a feature in the future.




Can you not convert a non-autonumous system to an autonomous system for me automatically

Although we can do that, it is not, and will not be implemented.  This is to ensure that the end user such as yourself are fully aware of the equations being defined.




Getting the sensitivities from SquareLoss did not get a speed up when I used a restricted set of parameters

This is because we currently evaluate the full set of sensitivities before extracting them out.  Speeding this up for a restrictive set is being considered.  A main reason that stopped us from implementing is that we find the symbolic gradient of the ode before compiling it.  Which means that one function call to the compiled file will return the full set of sensitivities and we would only be extracting the appropriate elements from the matrix.  This only amounts to a small speed up.  The best method would be to compile only the necessary elements of the gradient matrix, but this would require much more work both within the code, and later on when variables are being added/deleted as all these compilation are perfromed in runtime.




Why do not have the option to obtain gradient via complex differencing

It is currently not implemented.  Feature under consideration.







          

      

      

    

  

    
      
          
            
  
Code documentations


model



	common_models

	transition

	deterministic

	stochastic

	epi_analysis

	ode_utils








loss



	ode_loss

	calculations

	confidence_interval

	loss_type

	get_init











          

      

      

    

  

    
      
          
            
  
common_models

A set of commonly used models


	
pygom.model.common_models.FitzHugh(param=None)

	The standard FitzHugh model without external input [FitzHugh1961]


\[\begin{split}\frac{dV}{dt} &=  c ( V - \frac{V^{3}}{3} + R) \\
\frac{dR}{dt} &= -\frac{1}{c}(V - a + bR).\end{split}\]

Examples

>>> import numpy as np
>>> from pygom import common_models
>>> ode = common_models.FitzHugh({'a':0.2, 'b':0.2, 'c':3.0})
>>> t = np.linspace(0, 20, 101)
>>> x0 = [1.0, -1.0]
>>> ode.initial_values = (x0, t[0])
>>> solution = ode.integrate(t[1::])
>>> ode.plot()










	
pygom.model.common_models.Influenza_SLIARN(param=None)

	A simple influenza model from [Brauer2008], page 323.


\[\begin{split}\frac{dS}{dt} &= -S \beta (I + \delta A) \\
\frac{dL}{dt} &= S \beta (I + \delta A) - \kappa L \\
\frac{dI}{dt} &= p \kappa L - \alpha I \\
\frac{dA}{dt} &= (1 - p) \kappa L - \eta A \\
\frac{dR}{dt} &= f \alpha I + \eta A \\
\frac{dN}{dt} &= -(1 - f) \alpha I\end{split}\]






	
pygom.model.common_models.Legrand_Ebola_SEIHFR(param=None)

	The Legrand Ebola model [Legrand2007] with 6 compartments that includes the
H = hospitalization and F = funeral state. Note that because this
is an non-autonomous system, there are in fact a total of 7 states
after conversion.  The set of equations that describes the model are


\[\begin{split}\frac{dS}{dt} &= -(\beta_{I}SI + \beta_{H}SH + \beta_{F}SF) \\
\frac{dE}{dt} &= (\beta_{I}SI + \beta_{H}SH + \beta_{F}SF) - \alpha E \\
\frac{dI}{dt} &= \alpha E - (\gamma_{H} \theta_{1} + \gamma_{I}(1-\theta_{1})(1-\delta_{1}) + \gamma_{D}(1-\theta_{1})\delta_{1})I \\
\frac{dH}{dt} &= \gamma_{H}\theta_{1}I - (\gamma_{DH}\delta_{2} + \gamma_{IH}(1-\delta_{2}))H \\
\frac{dF}{dt} &= \gamma_{D}(1-\theta_{1})\delta_{1}I + \gamma_{DH}\delta_{2}H - \gamma_{F}F \\
\frac{dR}{dt} &= \gamma_{I}(1-\theta_{1})(1-\delta_{1})I + \gamma_{IH}(1-\delta_{2})H + \gamma_{F}F.\end{split}\]

Examples

>>> import numpy as np
>>> from pygom import common_models
>>> x0 = [1.0, 3.0/200000.0, 0.0, 0.0, 0.0, 0.0, 0.0]
>>> t = np.linspace(0, 25, 100)
>>> ode = common_models.Legrand_Ebola_SEIHFR([('beta_I',0.588),('beta_H',0.794),('beta_F',7.653),('omega_I',10.0/7.0),('omega_D',9.6/7.0),('omega_H',5.0/7.0),('omega_F',2.0/7.0),('alphaInv',7.0/7.0),('delta',0.81),('theta',0.80),('kappa',300.0),('interventionTime',7.0)])
>>> ode.initial_values = (x0, t[0])
>>> solution = ode.integrate(t[1::])
>>> ode.plot()










	
pygom.model.common_models.Lorenz(param=None)

	Lorenz attractor define by three parameters, \(\beta,\sigma,\rho\)
as per [Lorenz1963].


\[\begin{split}\frac{dx}{dt} &= \sigma (y-x) \\
\frac{dy}{dt} &= x (\rho - z) - y \\
\frac{dz}{dt} &= xy - \beta z\end{split}\]

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy
>>> from pygom import common_models
>>> t = numpy.linspace(0, 20, 101)
>>> params = {'beta':8.0/3.0, 'sigma':10.0, 'rho':28.0}
>>> ode = common_models.Lorenz(params)
>>> ode.initial_values = ([1., 1., 1.], t[0])
>>> solution = ode.integrate(t[1::])
>>> plt.plot(solution[:,0], solution[:,2])
>>> plt.show()










	
pygom.model.common_models.Lotka_Volterra(param=None)

	Standard Lotka-Volterra model with two states and four parameters [Lotka1920]


\[\begin{split}\frac{dx}{dt} &= \alpha x - cxy \\
\frac{dy}{dt} &= -\delta y + \gamma xy\end{split}\]

Examples

>>> import numpy as np
>>> from pygom import common_models
>>> params = {'alpha':1, 'delta':3, 'c':2, 'gamma':6}
>>> ode = common_models.Lotka_Volterra(params)
>>> ode.initial_values = ([2.0, 6.0], 0)
>>> t = np.linspace(0.1, 100, 10000)
>>> ode.integrate(t)
>>> ode.plot()










	
pygom.model.common_models.Lotka_Volterra_4State(param=None)

	The four state Lotka-Volterra model [Lotka1920]. A common interpretation is that
a = Grass, x = rabbits, y = foxes and b is the death of foxes.


\[\begin{split}\frac{da}{dt} &= k_{0} a x \\
\frac{dx}{dt} &= k_{0} a x - k_{1} x y \\
\frac{dy}{dt} &= k_{1} x y - k_{2} y \\
\frac{db}{dt} &= k_{2} y\end{split}\]

Examples

>>> import numpy as np
>>> from pygom import common_models
>>> x0 = [150.0, 10.0, 10.0, 0.0]
>>> t = np.linspace(0, 15, 100)
>>> params = [0.01, 0.1, 1.0]
>>> ode = common_models.Lotka_Volterra_4State(params)
>>> ode.initial_values = (x0, t[0])
>>> ode.integrate(t[1::])
>>> ode.plot()










	
pygom.model.common_models.Robertson(param=None)

	The so called Robertson problem [Robertson1966], which is a standard example used to
test stiff integrator.


\[\begin{split}\frac{dy_{1}}{dt} &= -0.04 y_{1} + 1 \cdot 10^{4} y_{2} y_{3} \\
\frac{dy_{2}}{dt} &= 0.04 y_{1} - 1 \cdot 10^{4} y_{2} y_{3} - 3 \cdot 10^{7} y_{2}^{2}\\
\frac{dy_{3}}{dt} &= 3 \cdot 10^{7} y_{2}^{2}\end{split}\]

Examples

>>> from pygom import common_models
>>> import numpy
>>> t = numpy.append(0, 4*numpy.logspace(-6, 6, 1000))
>>> ode = common_models.Robertson()
>>> ode.initial_values = ([1.0,0.0,0.0], t[0])
>>> solution = ode.integrate(t[1::])
>>> ode.plot() # note that this is not being plotted in the log scale










	
pygom.model.common_models.SEIR(param=None)

	A standard SEIR model [Brauer2008], defined by the ode


\[\begin{split}\frac{dS}{dt} &= -\beta SI \\
\frac{dE}{dt} &= \beta SI - \alpha E \\
\frac{dI}{dt} &= \alpha E - \gamma I \\
\frac{dR}{dt} &= \gamma I\end{split}\]


See also


	SEIR_Birth_Death()

	





Examples

>>> import numpy as np
>>> from pygom import common_models
>>> ode = common_models.SEIR({'beta':1800, 'gamma':100, 'alpha':35.84})
>>> t = np.linspace(0, 50, 1001)
>>> x0 = [0.0658, 0.0007, 0.0002, 0.0]
>>> ode.initial_values = (x0, t[0])
>>> solution,output = ode.integrate(t[1::], full_output=True)
>>> ode.plot()










	
pygom.model.common_models.SEIR_Birth_Death(param=None)

	A standard SEIR model with birth and death [Aron1984], defined by the ode


\[\begin{split}\frac{dS}{dt} &= \mu - \beta SI - \mu S \\
\frac{dE}{dt} &= \beta SI - (\mu + \alpha) E \\
\frac{dI}{dt} &= \alpha E - (\mu + \gamma) I \\
\frac{dR}{dt} &= \gamma I\end{split}\]


See also


	SEIR()

	





Examples

Uses the same set of parameters as the examples in SEIR()
apart from \(\mu\) which is new.

>>> import numpy as np
>>> from pygom import common_models
>>> params = {'beta':1800, 'gamma':100, 'alpha':35.84, 'mu':0.02}
>>> ode = common_models.SEIR_Birth_Death(params)
>>> t = np.linspace(0, 50, 1001)
>>> x0 = [0.0658, 0.0007, 0.0002, 0.0]
>>> ode.initial_values = (x0, t[0])
>>> solution,output = ode.integrate(t[1::], full_output=True)
>>> ode.plot()










	
pygom.model.common_models.SEIR_Birth_Death_Periodic(param=None)

	A SEIR birth death model with periodic contact [Aron1984], defined by the ode


\[\begin{split}\frac{dS}{dt} &= \mu - \beta(t)SI - \mu S \\
\frac{dE}{dt} &= \beta(t)SI - (\mu + \alpha) E \\
\frac{dI}{dt} &= \alpha E - (\mu + \gamma) I \\
\frac{dR}{dt} &= \gamma I\end{split}\]

where


\[\beta(t) = \beta_{0} (1 + \beta_{1} \cos(2 \pi t)).\]

An extension of an SEIR birth death model by varying the contact rate
through time.


See also


	SEIR(), SEIR_Birth_Death(), SIR_Periodic()

	





Examples

Uses the same set of parameters as the examples in
SEIR_Birth_Death() but now we have two beta parameters instead of one.

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from pygom import common_models
>>> params = {'beta0':1800, 'beta1':0.2, 'gamma':100, 'alpha':35.84, 'mu':0.02}
>>> ode = common_models.SEIR_Birth_Death_Periodic(params)
>>> t = np.linspace(0, 50, 1001)
>>> x0 = [0.0658, 0.0007, 0.0002, 0.0]
>>> ode.initial_values = (x0, t[0])
>>> solution,output = ode.integrate(t[1::], full_output=True)
>>> ode.plot()
>>> plt.plot(np.log(solution[:,0]), np.log(solution[:,1]))
>>> plt.show()
>>> plt.plot(np.log(solution[:,0]), np.log(solution[:,2]))
>>> plt.show()










	
pygom.model.common_models.SEIR_Multiple(n=2, param=None)

	An SEIR model that describe spatial heterogeneity [Brauer2008], page 180.
The model originated from [Lloyd1996] and notations used here
follows [Brauer2008].


\[\begin{split}\frac{dS_{i}}{dt} &= dN_{i} - dS_{i} - \lambda_{i} S_{i} \\
\frac{dE_{i}}{dt} &= \lambda_{i}S_{i} - (d + \epsilon) E_{i} \\
\frac{dI_{i}}{dt} &= \epsilon E_{i} - (d + \gamma) I_{i} \\
\frac{dR_{i}}{dt} &= \gamma I_{i} - dR_{i}\end{split}\]

where


\[\lambda_{i} = \sum_{j=1}^{n} \beta_{i,j} I_{j} (1\{i \neq j\} p)\]

with \(n\) being the number of patch and \(p\) the coupled factor.

Examples

Use the initial conditions that were derived from the stationary condition
specified in [Brauer2008].

>>> import numpy as np
>>> from pygom import common_models
>>> paramEval = {'beta_00':0.0010107, 'beta_01':0.0010107,
>>>              'beta_10':0.0010107, 'beta_11':0.0010107,
>>>              'd':0.02,'epsilon':45.6, 'gamma':73.0,
>>>              'N_0':10**6,'N_1':10**6,'p':0.01}
>>> x0 = [36139.3224081278, 422.560577637822,
>>>       263.883351688369, 963174.233662546]
>>> ode = common_models.SEIR_Multiple()
>>> t = np.linspace(0, 40, 100)
>>> x01 = []
>>> for s in x0:
>>>     x01 += [s]
>>>     x01 += [s]
>>> ode.parameters = paramEval
>>> ode.initial_values = (x01, t[0])
>>> solution, output = ode.integrate(t[1::], full_output=True)
>>> ode.plot()










	
pygom.model.common_models.SIR(param=None)

	A standard SIR model as per [Brauer2008]


\[\begin{split}\frac{dS}{dt} &= -\beta SI \\
\frac{dI}{dt} &= \beta SI - \gamma I \\
\frac{dR}{dt} &= \gamma I\end{split}\]

Examples

The model that produced top two graph in Figure 1.3 of the reference above.
First, when everyone is susceptible and only one individual was infected.

>>> import numpy as np
>>> from pygom import common_models
>>> ode = common_models.SIR({'beta':3.6, 'gamma':0.2})
>>> t = np.linspace(0, 730, 1001)
>>> N = 7781984.0
>>> x0 = [1.0, 10/N, 0.0]
>>> ode.initial_values = (x0, t[0])
>>> solution = ode.integrate(t[1::])
>>> ode.plot()





Second model with a more realistic scenario

>>> import numpy as np
>>> from pygom import common_models
>>> ode = common_models.SIR({'beta':3.6, 'gamma':0.2})
>>> t = np.linspace(0, 730, 1001)
>>> N = 7781984.0
>>> x0 = [0.065, 123*(5.0/30.0)/N, 0.0]
>>> ode.initial_values = (x0, t[0])
>>> solution = ode.integrate(t[1::])
>>> ode.plot()










	
pygom.model.common_models.SIR_Birth_Death(param=None)

	Extension of the standard SIR model [Brauer2008] to also include birth and death


\[\begin{split}\frac{dS}{dt} &= B -\beta SI - \mu S \\
\frac{dI}{dt} &= \beta SI - \gamma I - \mu I \\
\frac{dR}{dt} &= \gamma I\end{split}\]


See also


	SIR()

	





Examples

The model that produced bottom graph in Figure 1.3 of the reference above.

>>> import numpy as np
>>> from pygom import common_models
>>> B = 126372.0/365.0
>>> N = 7781984.0
>>> params = {'beta':3.6, 'gamma':0.2, 'B':B/N, 'mu':B/N}
>>> ode = common_models.SIR_Birth_Death(params)
>>> t = np.linspace(0, 35*365, 10001)
>>> x0 = [0.065, 123.0*(5.0/30.0)/N, 0.0]
>>> ode.initial_values = (x0, t[0])
>>> solution,output = ode.integrate(t[1::], full_output=True)
>>> ode.plot()










	
pygom.model.common_models.SIR_N(param=None)

	A standard SIR model [Brauer2008] with population N.  This is the unnormalized
version of the SIR model.


\[\begin{split}\frac{dS}{dt} &= -\beta SI/N \\
\frac{dI}{dt} &= \beta SI/N- \gamma I \\
\frac{dR}{dt} &= \gamma I\end{split}\]

Examples

The model that produced top two graph in Figure 1.3 of the reference above.
First, when everyone is susceptible and only one individual was infected.

>>> import numpy as np
>>> from pygom import common_models
>>> ode = common_models.SIR({'beta':3.6, 'gamma':0.2})
>>> t = np.linspace(0, 730, 1001)
>>> N = 7781984.0
>>> x0 = [N, 1.0, 0.0]
>>> ode.initial_values = (x0, t[0])
>>> solution = ode.integrate(t[1::])
>>> ode.plot()





Second model with a more realistic scenario

>>> import numpy as np
>>> from pygom import common_models
>>> ode = common_models.SIR({'beta':3.6, 'gamma':0.2})
>>> t = np.linspace(0, 730, 1001)
>>> N = 7781984.0
>>> x0 = [int(0.065*N), 21.0, 0.0]
>>> ode.initial_values = (x0, t[0])
>>> solution = ode.integrate(t[1::])
>>> ode.plot()










	
pygom.model.common_models.SIS(param=None)

	A standard SIS model


\[\begin{split}\frac{dS}{dt} &= -\beta SI + \gamma I \\
\frac{dI}{dt} &= \beta SI - \gamma I\end{split}\]

Examples

>>> import numpy as np
>>> from pygom import common_models
>>> ode = common_models.SIS({'beta':0.5, 'gamma':0.2})
>>> t = np.linspace(0, 20, 101)
>>> x0 = [1.0, 0.1]
>>> ode.initial_values = (x0, t[0])
>>> solution = ode.integrate(t[1::])
>>> ode.plot()










	
pygom.model.common_models.SIS_Periodic(param=None)

	A SIS model with periodic contact, defined by the ode as per [Hethcote1973]


\[\frac{dI}{dt} = (\beta(t)N - \alpha) I - \beta(t)I^{2}\]

where


\[\beta(t) = 2 - 1.8 \cos(5t).\]

As the name suggests, it achieves a (stable) periodic solution.

Examples

>>> from pygom import common_models
>>> import numpy as np
>>> ode = common_models.SIS_Periodic({'alpha':1.0})
>>> t = np.linspace(0, 10, 101)
>>> x0 = [0.1, 0.0]
>>> ode.initial_values = (x0, t[0])
>>> solution = ode.integrate(t[1::])
>>> ode.plot()










	
pygom.model.common_models.vanDelPol(param=None)

	The van der Pol equation [vanderpol1926], a second order ode


\[y^{\prime\prime} - \mu (1-y^{2}) y^{\prime} + y = 0\]

where \(\mu > 0\).  This can be converted to a first
order ode by equating \(x = y^{\prime}\)


\[x^{\prime} - \mu (1 - y^{2}) x + y = 0\]

which result in a coupled ode


\[\begin{split}x^{\prime} &= \mu (1 - y^{2}) x - y \\
y^{\prime} &= x\end{split}\]

and this can be solved via standard method.

Examples

>>> from pygom import common_models
>>> import numpy
>>> t = numpy.linspace(0, 20, 1000)
>>> ode = common_models.vanDelPol({'mu':1.0})
>>> ode.initial_values = ([2.0,0.0], t[0])
>>> solution = ode.integrate(t[1::])
>>> ode.plot()













          

      

      

    

  

    
      
          
            
  
transition

All classes required to define a transition that is inserted into
the ode model


	
class pygom.model.transition.Transition(origin, equation, transition_type='ODE', destination=None, ID=None, name=None)

	This class carries the information for transitions defined
for an ode, which includes the ode itself, a birth death
process where only one state is involved and also a transition
between two states


	Parameters

	
	origin: str

	Origin state.



	equation: str

	Equation defining the transition



	transition_type: enum or str, optional

	of type TransitionType or one of (‘ODE’, ‘T’, ‘B’, ‘D’)
defaults to ‘ODE’



	destination: str, optional

	Destination State.  If the transition is not between state,
such as a birth or death process, then this is is not
required.  If it is stated as a birth, death or an ode then
it throws an error










	
destination

	Return the destination state


	Returns

	
	string

	The destination state














	
equation

	Return the transition _equation


	Returns

	
	string

	The transition _equation














	
is_between_state()

	Return whether it is a transition between two state


	Returns

	
	bool

	True if it is a transition between two state
False if it is only related to the origin state














	
origin

	Return the origin state


	Returns

	
	string

	The origin state














	
transition_type

	Return the type of transition


	Returns

	
	transition_type

	One of the four type available from transition_type


















	
class pygom.model.transition.TransitionType

	This is an Enum describing the four feasible type of transitions use to
define the ode model BaseOdeModel

The following four types of transitions are available.

B = Birth process

D = Death process

T = Transition between states

ODE = ODE _equation









          

      

      

    

  

    
      
          
            
  
deterministic

This module is defined such that operation on ode are all gathered
in one place.  Future extension of operations should be added here


	
class pygom.model.deterministic.DeterministicOde(state=None, param=None, derived_param=None, transition=None, birth_death=None, ode=None)

	This contains the interface and operation
built above the already defined set of ode


	Parameters

	
	state: list

	A list of states (string)



	param: list

	A list of the parameters (string)



	derived_param: list

	A list of the derived parameters (tuple of (string,string))



	transition: list

	A list of transition (Transition)



	birth_death: list

	A list of birth or death process (Transition)



	ode: list

	A list of ode (Transition)










	
adjoint(state, t, state_param, func=None)

	Compute the adjoint given the adjoint vector, time, state variable
and the objective function.  Note that this function is very
restrictive in the sense that the (original) state variable changes
through time but this assumes it is a constant, i.e. we assume that
the original system is linear.


	Parameters

	
	state: array like

	The current value of lambda, where lambda’s are the Lagrangian
multipliers of the differential equation.



	t: double

	The current time.



	state_param: array like

	The state vector that is (or maybe) required to evaluate the
jacobian of the original system



	func: callable

	This should take inputs similar to an ode, i.e. of the form
func(y,t).  If j(y,t) is the cost function, then func
is a function that calculates
\(\partial j \over \partial x\).







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	output of the same length as the ode









Notes

The size of lambda should be the same as the state. The integral
should be starting from T, the final time of the original system
and is integrated backwards (for stability).






	
adjoint_T(t, state, state_param, func=None)

	Same as adjoint() but with t as first parameter






	
adjoint_interpolate(state, t, interpolant, func=None)

	Compute the adjoint given the adjoint vector, time, the functions
which was used to interpolate the state variable


	Parameters

	
	state: array like

	The current value of lambda, where lambda’s are the Lagrangian
multipliers of the differential equation.



	t: double

	The current time.



	interpolant: list

	list of interpolating functions of the state



	func: callable

	This should take inputs similar to an ode, i.e. of the form
func(y,t).  If j(y,t) is the cost function, then func
is a function that calculates
\(\partial j \over \partial x\).







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	output of the same length as the ode














	
adjoint_interpolate_T(t, state, interpolant, objInput=None)

	Same as adjoint_interpolate() but with t as first parameter






	
adjoint_interpolate_jacobian(state, t, interpolant, func=None)

	Compute the Jacobian of the adjoint given the adjoint vector, time,
function of the interpolation on the state variables and the
objective function.  This is simply the same as the negative
Jacobian of the ode transposed.


	Parameters

	
	state: array like

	The current value of lambda, where lambda’s are the Lagrangian
multipliers of the differential equation.



	t: double

	The current time.



	interpolant: list

	list of interpolating functions of the state



	func: callable

	This should take inputs similar to an ode, i.e. of the form
func(y,t).  If j(y,t) is the cost function, then func is
a function that calculates \(\partial j \over \partial x\).







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	output of is a two dimensional array of size
[number of state x number of state]










See also


	adjoint_jacobian()

	





Notes

Same as adjoint_jacobian() but takes a list of interpolating
function instead of a single (vector) value






	
adjoint_interpolate_jacobian_T(t, state, interpolant, func=None)

	Same as adjoint_interpolate_jacobian() but with t as
first parameter






	
adjoint_jacobian(state, t, state_param, func=None)

	Compute the jacobian of the adjoint given the adjoint vector, time,
state variable and the objective function.  This is simply the same
as the negative jacobian of the ode transposed.


	Parameters

	
	state: array like

	The current value of lambda, where lambda’s are the Lagrangian
multipliers of the differential equation.



	t: double

	The current time.



	state_param: array like

	The state vector that is (or maybe) required to evaluate the
jacobian of the original system



	func: callable

	This should take inputs similar to an ode, i.e. of the form
func(y,t).  If j(y,t) is the cost function, then func
is a function that calculates
\(\partial j \over \partial x\).







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	output of is a two dimensional array of size
[number of state x number of state]










See also


	adjoint()

	





Notes

It takes the same number of argument as the adjoint for simplicity
when integrating.






	
adjoint_jacobian_T(t, state, state_param, func=None)

	Same as adjoint_jacobian_T() but with t being the
first parameter






	
diff_jacobian(state, t)

	Evaluate the differential of jacobian given state and time


	Parameters

	
	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list



	t: double

	The current time







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Matrix of dimension [number of state x number of state]














	
diff_jacobian_T(t, state)

	Same as diff_jacobian() but with t as first parameter






	
eval_diff_jacobian(parameters=None, time=None, state=None)

	Evaluate the differential of the jacobian given parameters,
state and time. An extension of diff_jacobian() but now
also include the parameters.


	Parameters

	
	parameters: list

	see parameters()



	time: double

	The current time



	state: array list

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list







	Returns

	
	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or mpmath.matrix

	Matrix of dimension [number of state x number of state]










See also


	jacobian()

	





Notes

Name and order of state and time are also different.






	
eval_forwardforward(FF, S, state, t)

	Evaluate a single f(x) of the forward-forward sensitivities


	Parameters

	
	FF: array like

	this is in fact a 3rd order Tensor, aka 3d array



	S: array like

	sensitivities in matrix form



	state: array like

	the current state



	t: numeric

	time







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	f(x) of size [number of state *
(number of parameters * number of parameters)]














	
eval_grad(parameters=None, time=None, state=None)

	Evaluate the gradient given parameters, state and time. An extension
of grad() but now also include the parameters.


	Parameters

	
	parameters: list

	see parameters()



	time: double

	The current time



	state: array list

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list







	Returns

	
	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or mpmath.matrix

	Matrix of dimension [number of state x number of state]










See also


	grad()

	





Notes

Name and order of state and time are also different.






	
eval_grad_jacobian(parameters=None, time=None, state=None)

	Evaluate the jacobian of the gradient given parameters,
state and time. An extension of grad_jacobian()
but now also include the parameters.


	Parameters

	
	parameters: list

	see parameters()



	time: double

	The current time



	state: array list

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list







	Returns

	
	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or mpmath.matrix

	Matrix of dimension [number of state x number of state]










See also


	grad_jacobian(), get_grad_jacobian_eqn()

	





Notes

Name and order of state and time are also different.






	
eval_hessian(parameters=None, time=None, state=None)

	Evaluate the hessian given parameters, state and time. An extension
of hessian() but now also include the parameters.


	Parameters

	
	parameters: list

	see parameters()



	time: double

	The current time



	state: array list

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list







	Returns

	
	list

	list of dimension number of state, each with matrix
[number of parameters x number of parameters] in
sympy.matricies.matricies










See also


	grad(), eval_grad()

	










	
eval_jacobian(parameters=None, time=None, state=None)

	Evaluate the jacobian given parameters, state and time. An extension
of jacobian() but now also include the parameters.


	Parameters

	
	parameters: list

	see parameters()



	time: double

	The current time



	state: array list

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list







	Returns

	
	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or mpmath.matrix

	Matrix of dimension [number of state x number of state]










See also


	jacobian()

	





Notes

Name and order of state and time are also different.






	
eval_ode(parameters=None, time=None, state=None)

	Evaluate the ode given time, state and parameters.  An extension
of ode() but now also include the parameters.


	Parameters

	
	parameters: list

	see parameters()



	time: numeric

	The current time



	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list







	Returns

	
	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or mpmath.matrix

	output of the same length as the ode.










See also


	ode()

	





Notes

There are differences between the output of this function and
ode().  Name and order of state and time are also
different.






	
eval_sens_jacobian_state(time=None, state=None, sens=None)

	Evaluate the jacobian of the sensitivities w.r.t the states given
parameters, state and time. An extension of sens_jacobian_state()
but now also include the parameters.


	Parameters

	
	parameters: list

	see parameters()



	time: double

	The current time



	state: array list

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list







	Returns

	
	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or mpmath.matrix

	Matrix of dimension [number of state x number of state]










See also


	sens_jacobian_state()

	





Notes

Name and order of state and time are also different.






	
eval_sensitivity(S, t, state, by_state=False)

	Evaluate the sensitivity given state and time


	Parameters

	
	S: array like

	Which should be numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].
The starting sensitivity of size [number of state x number of
parameters].  Which are normally zero or one,
depending on whether the initial conditions are also variables.



	t: double

	The current time



	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list



	by_state: bool

	how we want the output to be arranged.  Default is True so
that we have a block diagonal structure







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	








See also


	sensitivity()

	





Notes

It is different to eval_ode() and eval_jacobian() in
that the extra input argument is not a parameter






	
eval_sensitivityIV(S, IV, t, state)

	Evaluate the sensitivity with initial values given
state and time


	Parameters

	
	S: array like

	Which should be numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].
The starting sensitivity of size [number of state x number of
parameters].  Which are normally zero or one,
depending on whether the initial conditions are also variables.



	IV: array like

	sensitivities for the initial values



	t: double

	The current time



	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	\(f(s(x,\theta))\) and \(f(s(x_{0}))\)










See also


	sensitivityIV()

	





Notes

It is different to eval_ode() and eval_jacobian() in
that the extra input argument is not a parameter.






	
forwardforward(ff, t, state, s)

	Evaluate a single \(f(x)\) of the forward-forward sensitivities


	Parameters

	
	ff: array like

	the forward-forward sensitivities in vector form



	t: numeric

	time



	state: array like

	the current state



	s: array like

	forward sensitivities in vector form







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	\(f(x)\) of size [number of state *
(number of parameters * number of parameters)]














	
forwardforward_T(t, ff, s, state)

	Same as forwardforward() but with t as the first
parameter






	
get_diff_jacobian_eqn()

	Returns the jacobian differentiate w.r.t. states in algebraic form


	Returns

	
	list

	list of size (num of state,) each with
sympy.matrices.matrices [https://docs.sympy.org/latest/modules/matrices/matrices.html#module-sympy.matrices.matrices] of dimension
[number of state x number of state]














	
get_grad_eqn()

	Return the gradient of the ode in algebraic form


	Returns

	
	sympy.matrices.matrices

	A matrix of dimension [number of state x number of parameters]














	
get_grad_jacobian_eqn()

	Return the jacobian of the gradient in algebraic form


	Returns

	
	sympy.matrices.matrices

	A matrix of dimension [number of state *
number of parameters x number of state]










See also


	get_grad_eqn()

	










	
get_hessian_eqn()

	Return the Hessian of the ode in algebraic form


	Returns

	
	list

	list of dimension number of state, each with matrix
[number of parameters x number of parameters] in
sympy.matricies.matricies









Notes

We deliberately return a list instead of a 3d array of a
tensor to avoid confusion






	
get_jacobian_eqn()

	Returns the jacobian in algebraic form


	Returns

	
	sympy.matrices.matrices

	A matrix of dimension [number of state x number of state]














	
get_ode_eqn(param_sub=False)

	Find the algebraic equations of the ode system.


	Returns

	
	sympy.matrices.matrices

	ode in matrix form














	
get_transition_graph(file_name=None, show=True)

	Returns the transition graph using graphviz


	Parameters

	
	file_name: str, optional

	name of the output file, defaults to None



	show: bool, optional

	If the graph should be plotted, defaults to True







	Returns

	
	graphviz.Digraph

	












	
grad(state, time)

	Evaluate the gradient given state and time


	Parameters

	
	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list



	t: numeric

	The current time







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Matrix of dimension [number of state x number of parameters]














	
grad_T(t, state)

	Same as grad_T() but with t as first parameter






	
grad_jacobian(state, time)

	Evaluate the Jacobian of the gradient given state and time


	Parameters

	
	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list



	t: numeric

	The current time







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Matrix of dimension [number of state x number of parameters]










See also


	grad()

	










	
grad_jacobianT(t, state)

	Same as grad_jacobian() but with t as first parameter






	
hessian(state, time)

	Evaluate the hessian given state and time


	Parameters

	
	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list



	t: double

	The current time







	Returns

	
	list

	list of dimension number of state, each with matrix
[number of parameters x number of parameters] in
sympy.matricies.matricies














	
initial_state

	Return the initial state values






	
initial_time

	Return the initial time






	
initial_values

	Returns the initial values, both time and state as a tuple (x0, t0)






	
integrate(t, full_output=False)

	Integrate over a range of t when t is an array and a output at time t


	Parameters

	
	t: array like

	the range of time points which we want to see the result of



	full_output: bool

	if we want additional information














	
integrate2(t, full_output=False, method=None)

	Integrate over a range of t when t is an array and a output
at time t.  Select a suitable method to integrate when
method is None.


	Parameters

	
	t: array like

	the range of time points which we want to see the result of



	full_output: bool

	if we want additional information



	method: str, optional

	the integration method.  All those available in
ode [https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html#scipy.integrate.ode] are allowed with ‘vode’
and ‘ivode’ representing the non-stiff and stiff version
respectively.  Defaults to None, which tries to choose the
integration method via eigenvalue analysis (only one) using
the initial conditions














	
is_stiff(state=None, t=None)

	Test on the eigenvalues of the jacobian.  We classify the
problem as stiff if any of the eigenvalues are positive


	Parameters

	
	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list



	t: double

	The current time







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	eigenvalues of the system given input














	
jacobian(state, t)

	Evaluate the jacobian given state and time


	Parameters

	
	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list



	t: double

	The current time







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Matrix of dimension [number of state x number of state]














	
jacobian_T(t, state)

	Same as jacobian() but with t as first parameter






	
jacobian_eigenvalue(state=None, t=None)

	Find out the eigenvalues of the jacobian given state and time. If
None is given, the initial values are used.


	Parameters

	
	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list



	t: double

	The current time







	Returns

	
	bool

	True if any eigenvalue is positive














	
linear_ode()

	To check whether the input ode is linear


	Returns

	
	bool

	True if it is linear, False otherwise














	
ode(state, t)

	Evaluate the ode given state and time


	Parameters

	
	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list



	t: double

	The current time







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	output of the same length as the ode














	
ode_T(t, state)

	Same as ode() but with t as the first parameter






	
ode_and_forwardforward(state_param, t)

	Evaluate a single f(x) of the ode and the
forward-forward sensitivities


	Parameters

	
	state_param: array like

	state and forward-forward sensitivities in vector form



	t: numeric

	time







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	same size as the state_param input














	
ode_and_forwardforward_T(t, state_param)

	Same as odeAndForwardForward() but with time
as the first input






	
ode_and_forwardforward_jacobian(state_param, t)

	Return the jacobian after evaluation given the input
of the state and the forward forward sensitivities


	Parameters

	
	state_param: array like

	state and forward-forward sensitivities in vector form



	t: numeric

	time







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	size of (a,a) where a is the length of the
state_param input














	
ode_and_forwardforward_jacobian_T(t, state_param)

	Same as ode_and_forwardforward_jacobian() but
with t being the first parameters






	
ode_and_sensitivity(state_param, t, by_state=False)

	Evaluate the sensitivity given state and time


	Parameters

	
	state_param: array like

	The current numerical value for the states as well as the
sensitivities values all in one.  We assume that the state
values comes first.



	t: double

	The current time



	by_state: bool

	Whether the output vector should be arranged by state or by
parameters. If False, then it means that the vector of output is
arranged according to looping i,j from Sensitivity_{i,j} with i
being the state and j the param. This is the preferred way because
it leds to a block diagonal Jacobian







	Returns

	
	list

	concatenation of 2 element. First contains the ode, second the
sensitivity. Both are of type numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










See also


	sensitivity(), ode()

	










	
ode_and_sensitivityIV(state_param, t)

	Evaluate the sensitivity given state and time


	Parameters

	
	state_param: array like

	The current numerical value for the states as well as the
sensitivities values all in one.  We assume that the state
values comes first.



	t: double

	The current time







	Returns

	
	list

	concatenation of 3 element. First contains the ode, second the
sensitivity, then the sensitivity of the initial value.  All
of them are of type
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










See also


	sensitivity(), ode()

	










	
ode_and_sensitivityIV_T(t, state_param)

	Same as ode_and_sensitivityIV() but with t as first parameter






	
ode_and_sensitivityIV_jacobian(state_param, t)

	Evaluate the sensitivity given state and time.  Output a block
diagonal sparse matrix as default.


	Parameters

	
	state_param: array like

	The current numerical value for the states as well as the
sensitivities values all in one.  We assume that the state
values comes first.



	t: double

	The current time



	byState: bool

	How the output is arranged, according to the vector of output.
It can be in terms of state or parameters, where by state means
that the jacobian is a block diagonal matrix.







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	output of a square matrix of size: number of ode + 1 times number
of parameters










See also


	ode_and_sensitivity()

	










	
ode_and_sensitivityIV_jacobian_T(t, state_param)

	Same as ode_and_sensitivityIV_jacobian() but with t as
first parameter






	
ode_and_sensitivity_T(t, state_param, by_state=False)

	Same as ode_and_sensitivity() but with t as first parameter






	
ode_and_sensitivity_jacobian(state_param, t, by_state=False)

	Evaluate the sensitivity given state and time.  Output a block
diagonal sparse matrix as default.


	Parameters

	
	state_param: array like

	The current numerical value for the states as well as the
sensitivities values all in one.  We assume that the state
values comes first.



	t: double

	The current time



	by_state: bool

	How the output is arranged, according to the vector of output.
It can be in terms of state or parameters, where by state means
that the jacobian is a block diagonal matrix.







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	output of a square matrix of size: number of ode + 1 times number
of parameters










See also


	ode_and_sensitivity()

	










	
ode_and_sensitivity_jacobian_T(t, state_param, by_state=False)

	Same as ode_and_sensitivity_jacobian() but with t as
first parameter






	
plot()

	Plot the results of the integration

Notes

If we have 3 states or more, it will always be arrange such
that it has 3 columns.  Uses the operation from
odeutils






	
print_ode(latex_output=False)

	Prints the ode in symbolic form onto the screen/console in actual
symbols rather than the word of the symbol.


	Parameters

	
	latex_output: bool, optional

	Defaults to false which prints the equation in terms of symbols,
if set to yes then the formula in terms of latex equations will
be printed onto the screen.














	
sens_jacobian_state(state_param, t)

	Evaluate the jacobian of the sensitivity w.r.t. the
state given state and time


	Parameters

	
	state_param: array like

	The current numerical value for the states as
well as the sensitivities, which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list



	t: double

	The current time







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Matrix of dimension [number of state *
number of parameters x number of state]














	
sens_jacobian_state_T(t, state)

	Same as sens_jacobian_state_T() but with t as first parameter






	
sensitivity(sens, t, state, by_state=False)

	Evaluate the sensitivity given state and time.  The default is to
output the values by parameters, i.e. \(s_{i},\ldots,s_{i+n}\) are
partial derivatives w.r.t. the states for
\(i \in {1,1+p,1+2p,1+3p, \ldots, 1+(n-1)p}\).  This is
to take advantage of the fact that we have a block diagonal
jacobian that was already evaluated


	Parameters

	
	sens: array like

	The starting sensitivity of size [number of state x number of
parameters].  Which are normally zero or one,
depending on whether the initial conditions are also variables.



	t: double

	The current time



	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list



	by_state: bool

	how we want the output to be arranged.  Default is True so
that we have a block diagonal structure







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	












	
sensitivityIV(sensIV, t, state)

	Evaluate the sensitivity which include the initial values as
our parameters given state and time.  The default is to
output the values by parameters, i.e. \(s_{i},\ldots,s_{i+n}\) are
partial derivatives w.r.t. the states for
\(i \in {1,1+p,1+2p,1+3p, \ldots, 1+(n-1)p}\).  This is to take
advantage of the fact that we have a block diagonal Jacobian that was
already evaluated.


	Parameters

	
	sensIV: array like

	The starting sensitivity of size [number of state x number of
parameters] + [number of state x number of state] for the
initial condition.  The latter is an identity matrix at time zero.



	t: double

	The current time



	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	output of the same length as the ode














	
sensitivityIV_T(t, sensIV, state)

	Same as sensitivityIV() but with t as first parameter






	
sensitivity_T(t, sens, state, by_state=False)

	Same as sensitivity() but with t as first parameter













          

      

      

    

  

    
      
          
            
  
stochastic

Module/class that carries out different type of simulation
on an ode formulation


	
class pygom.model.simulate.SimulateOde(state=None, param=None, derived_param=None, transition=None, birth_death=None, ode=None)

	This builds on top of DeterministicOde which we
simulate the outcome instead of solving it deterministically


	Parameters

	
	state: list

	A list of states (string)



	param: list

	A list of the parameters (string)



	derived_param: list

	A list of the derived parameters (tuple of (string,string))



	transition: list

	A list of transition (Transition)



	birth_death: list

	A list of birth or death process (Transition)



	ode: list

	A list of ode (Transition)










	
birth_death_rate(state, t)

	Evaluate the birth death rates given state and time


	Parameters

	
	state: array like

	The current numerical value for the states which can be
np.ndarray or list



	t: double

	The current time







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	an array of size (M,M) where M is the number
of birth and death actions














	
cle(x0, t0, t1, output_time=False)

	Stochastic simulation using the CLE approximation starting from time
t0 to t1 with the starting state values of x0.  The CLE approximation
is performed using a simple Euler-Maruyama method with step size h.
We assume that the input parameter transition_func provides
\(f(x,t)\) while the CLE is defined as
\(dx = x + V*h*f(x,t) + \sqrt(f(x,t))*Z*\sqrt(h)\)
with \(Z\) being standard normal random variables.


	Parameters

	
	x: array like

	state vector



	t0: double

	start time



	t1: double

	final time














	
eval_birth_death_rate(parameters=None, time=None, state=None)

	Evaluate the birth and death rates given parameters, state and time.


	Parameters

	
	parameters: list

	see setParameters()



	time: double

	The current time



	state: array list

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list







	Returns

	
	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or mpmath.matrix

	Matrix of dimension [number of birth and death rates x 1]














	
eval_transition_matrix(parameters=None, time=None, state=None)

	Evaluate the transition matrix given parameters, state and time. Note
that the output is not in sparse format


	Parameters

	
	parameters: list

	see setParameters()



	time: double

	The current time



	state: array list

	The current numerical value for the states which can
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list







	Returns

	
	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or mpmath.matrix

	Matrix of dimension [number of state x number of state]














	
eval_transition_mean(parameters=None, time=None, state=None)

	Evaluate the transition mean given parameters, state and time.


	Parameters

	
	parameters: list

	see setParameters()



	time: double

	The current time



	state: array list

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list







	Returns

	
	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or mpmath.matrix

	Matrix of dimension [number of state x number of state]














	
eval_transition_var(parameters=None, time=None, state=None)

	Evaluate the transition variance given parameters, state and time.


	Parameters

	
	parameters: list

	see setParameters()



	time: double

	The current time



	state: array list

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list







	Returns

	
	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or mpmath.matrix

	Matrix of dimension [number of state x number of state]














	
eval_transition_vector(parameters=None, time=None, state=None)

	Evaluate the transition vector given parameters, state and time. Note
that the output is not in sparse format


	Parameters

	
	parameters: list

	see setParameters()



	time: double

	The current time



	state: array list

	The current numerical value for the states which can
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list







	Returns

	
	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or mpmath.matrix

	vector of dimension [total number of transitions]














	
exact(x0, t0, t1, output_time=False)

	Stochastic simulation using an exact method starting from time
t0 to t1 with the starting state values of x0


	Parameters

	
	x: array like

	state vector



	t0: double

	start time



	t1: double

	final time














	
get_bd_from_ode(A=None)

	Returns a list of:class:Transition from this object by unrolling
the odes.  All the elements are of TransitionType.B or
TransitionType.D






	
get_birth_death_rate()

	Find the algebraic equations of birth and death processes


	Returns

	
	sympy.matrices.matrices

	birth death process in matrix form














	
get_transition_matrix()

	Returns the transition matrix in algebraic form.


	Returns

	
	sympy.matrices.matrices

	A matrix of dimension [number of state x number of state]














	
get_transition_vector()

	Returns the set of transitions in a single vector, transitions
between state to state first then the birth and death process


	Returns

	
	sympy.matrices.matrices

	A matrix of dimension [total number of transitions x 1]














	
get_transitions_from_ode()

	Returns a list of Transition from this object by unrolling
the odes.  All the elements are of TransitionType.T






	
get_unrolled_obj()

	Returns a SimulateOde with the same state and parameters
as the current object but with the equations defined by a set of
transitions and birth death process instead of say, odes






	
hybrid(x0, t0, t1, output_time=False)

	Stochastic simulation using an hybrid method that uses either the
first reaction method or the \(\tau\)-leap depending on the
size of the states and transition rates.  Starting from time
t0 to t1 with the starting state values of x0.


	Parameters

	
	x: array like

	state vector



	t0: double

	start time



	t1: double

	final time














	
plot(sim_X=None, sim_T=None)

	Plot the results of a simulation

Takes the output of a function like simulate_jump


	Parameters

	
	sim_X: list

	of length iteration each with (len(t),len(state)) if t is a vector,
else it outputs unequal shape that was record of all the jumps



	sim_T: list or :class:`numpy.ndarray`

	if t is a single value, it outputs unequal shape that was
record of all the jumps.  if t is a vector, it outputs t so that
it is a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] instead









Notes

If either sim_X or sim_T are None the this function will attempt to
plot the deterministic ODE

If we have 3 states or more, it will always be arrange such
that it has 3 columns.  Uses the operation from
odeutils






	
simulate_jump(t, iteration, parallel=False, exact=False, full_output=False)

	Simulate the ode using stochastic simulation.  It switches
between a first reaction method and a \(\tau\)-leap
algorithm internally. When a parallel backend exists, then a new random
state (seed) will be used for each processor.  This is due to a lack
of appropriate parallel seed random number generator in python.


	Parameters

	
	t: array like

	the range of time points which we want to see the result of
or the final time point



	iteration: int

	number of iterations you wish to simulate



	parallel: bool, optional

	Defaults to True



	exact: bool, optional

	True if exact simulation is desired, defaults to False



	full_output: bool, optional

	if we want additional information, sim_T







	Returns

	
	sim_X: list

	of length iteration each with (len(t),len(state)) if t is a vector,
else it outputs unequal shape that was record of all the jumps



	sim_T: list or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	if t is a single value, it outputs unequal shape that was
record of all the jumps.  if t is a vector, it outputs t so that
it is a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] instead














	
simulate_param(t, iteration, parallel=False, full_output=False)

	Simulate the ode by generating new realization of the stochastic
parameters and integrate the system deterministically.


	Parameters

	
	t: array like

	the range of time points which we want to see the result of



	iteration: int

	number of iterations you wish to simulate



	parallel: bool, optional

	Defaults to True



	full_output: bool, optional

	if we want additional information, Y_all in the return,
defaults to false







	Returns

	
	Y: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	of shape (len(t), len(state)), mean of all the simulation



	Y_all: np.ndarray

	of shape (iteration, len(t), len(state))














	
total_transition(state, t)

	Evaluate the total transition rate given state and time


	Parameters

	
	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list



	t: double

	The current time







	Returns

	
	float

	total rate














	
transition_matrix(state, t)

	Evaluate the transition matrix given state and time


	Parameters

	
	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list



	t: double

	The current time







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	a 2d array of size (M,M) where M is the number
of transitions














	
transition_mean(state, t)

	Evaluate the mean of the transitions given state and time.  For
m transitions and n states, we have


\[\begin{split}f_{j,k} &= \sum_{i=1}^{n} \frac{\partial a_{j}(x)}{\partial x_{i}} v_{i,k} \\
\mu_{j} &= \sum_{k=1}^{m} f_{j,k}(x)a_{k}(x) \\
\sigma^{2}_{j}(x) &= \sum_{k=1}^{m} f_{j,k}^{2}(x) a_{k}(x)\end{split}\]

where \(v_{i,k}\) is the state change matrix.


	Parameters

	
	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list



	t: double

	The current time







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	an array of size m where m is the number of transition














	
transition_var(state, t)

	Evaluate the variance of the transitions given state and time


	Parameters

	
	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list



	t: double

	The current time







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	an array of size M where M is the number of transition














	
transition_vector(state, t)

	Evaluate the transition vector given state and time


	Parameters

	
	state: array like

	The current numerical value for the states which can be
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list



	t: double

	The current time







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	a 1d array of size K where K is the number of between
states transitions and the number of birth death
processes





















          

      

      

    

  

    
      
          
            
  
epi_analysis

Module containing functions that performs epidemiology based analysis
via algebraic manipulation, such as the basic reproduction number


	
pygom.model.epi_analysis.DFE(ode, disease_state)

	Returns the disease free equilibrium from an ode object


	Parameters

	
	ode: :class:`.BaseOdeModel`

	a class object from pygom



	diseaseState: array like

	name of the disease states







	Returns

	
	e: array like

	disease free equilibrium














	
pygom.model.epi_analysis.R0(ode, disease_state)

	Returns the basic reproduction number, in symbolic form when
the parameter values are not available


	Parameters

	
	ode: :class:`.BaseOdeModel`

	a class object from pygom



	diseaseStateIndex: array like

	name of the disease states







	Returns

	
	e: array like

	R0










See also


	getDiseaseProgressionMatrices(), getR0GivenMatrix()

	










	
pygom.model.epi_analysis.R0_from_matrix(F, V, disease_state=None)

	Returns the symbolic form of the basic reproduction number. This will
include the states symbols which is different from getR0() where
the states is replaced by the values of the disease-free equilibrium.


	Parameters

	
	F: :class:`sympy.matrices.MatrixBase`

	secondary infection rates



	V: :class:`sympy.matrices.MatrixBase`

	disease progression rates



	disease_state: list like, optional

	list of the disease state as sympy.Symbol.  Defaults
to None which assumes that \(F,V\) had been differentiated







	Returns

	
	e: sympy.matrices.MatrixBase

	the eigenvalues of \(FV^{-1}\) for the disease states










See also


	getDiseaseProgressionMatrices(), getR0()

	










	
pygom.model.epi_analysis.disease_progression_matrices(ode, disease_state, diff=True)

	Returns (F,V), the secondary infection rates and disease progression
rate respectively.


	Parameters

	
	ode: :class:`.BaseOdeModel`

	an ode class in pygom



	diseaseStates: array like

	the name of the disease states



	diff: bool, optional

	if the first derivative of the matrices are return, defaults to true







	Returns

	
	(F, V): tuple

	The progression matrices.  If diff=False, then we return the
\(F_{i}\) and \(V_{i}\) matrices as per [Brauer2008].

















          

      

      

    

  

    
      
          
            
  
ode_utils

Utilities used throughout the package.


	
class pygom.model.ode_utils.shapeAdjust(numState, numParam, numTarget=None)

	A class that change vector into matrix and vice versa for
vectors used in DeterministicOde


	Parameters

	
	numState: int

	number of states



	numParam: int

	number of parameters



	numTarget: int, optional

	number of targeted states, default assumes that this is the
same as numState










	
kronParam(A, pre=False)

	A sparse multiplication with an identity matrix of size
equal to the number of parameters as initialized


	Parameters

	
	A: array like

	a 2d array



	pre: bool, optional

	If True, then returns \(I \otimes A\).
If False then \(A \otimes I\), where \(A\) is the input
matrix, \(I\) is the identity matrix and \(\otimes\) is
the kron operator














	
kronState(A, pre=False)

	A sparse multiplication with an identity matrix of size
equal to the number of state as initialized


	Parameters

	
	A: array like

	a 2d array



	pre: bool, optional

	If True, then returns \(I \otimes A\).
If False then \(A \otimes I\), where \(A\) is the input
matrix, \(I\) is the identity matrix and \(\otimes\) is
the kron operator














	
matToVecFF(FF)

	Transforms the forward forward sensitivity matrix to a vector






	
matToVecSens(S)

	Transforms the sensitivity matrix to a vector






	
vecToMatFF(ff)

	Transforms the forward forward sensitivity vector to a matrix






	
vecToMatSens(s)

	Transforms the sensitivity vector to a matrix










	
pygom.model.ode_utils.integrate(ode, x0, t, full_output=False)

	A wrapper on top of odeint using
DeterministicOde.


	Parameters

	
	ode: object

	of type DeterministicOde



	t: array like

	the time points including initial time



	full_output: bool, optional

	If the additional information from the integration is required














	
pygom.model.ode_utils.integrateFuncJac(func, jac, x0, t0, t, args=(), includeOrigin=False, full_output=False, method=None, nsteps=10000)

	A replacement for scipy.integrate.odeint which performs integration
using scipy.integrate.ode [https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html#scipy.integrate.ode], tries to pick the correct integration
method at the start through eigenvalue analysis


	Parameters

	
	func: callable

	the ode \(f(x)\)



	jac: callable

	jacobian of the ode, \(J_{i,j} = \nabla_{x_{j}} f_{i}(x)\)



	x0: `numpy.ndarray` or list of numeric

	initial value of the states



	t0: float

	initial time



	args: tuple, optional

	additional arguments to be passed on



	includeOrigin: bool, optional

	if the output should include the initial states x0



	full_output: bool, optional

	if additional output is required



	method: str, optional

	the integration method.  All those availble in
ode [https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html#scipy.integrate.ode] are allowed with ‘vode’ and
‘ivode’ representing the non-stiff and stiff version respectively.
Defaults to None, which tries to choose the integration method
via eigenvalue analysis (only one) using the initial conditions



	nstep: int, optional

	number of steps allowed between each time point of the integration







	Returns

	
	solution: array like

	a np.ndarray of shape (len(t), len(x0)) if includeOrigin is
False, else an extra row with x0 being the first.



	outputdict, only returned if full_output=True

	Dictionary containing additional output information







	key

	meaning





	‘ev’

	vector of eigenvalues at each t



	‘maxev’

	maximum eigenvalue at each t



	‘minev’

	minimum eigenvalue at each t



	‘suc’

	list whether integration is successful



	‘in’

	name of integrator



















	
class pygom.model.ode_utils.compileCode(backend=None)

	A class that compiles an algebraic expression in sympy to a faster
numerical file using the appropriate backend.


	
compileExpr(inputSymb, inputExpr, backend=None, compileType=False)

	Compiles the expression given the symbols.  Determines the backend
if required.


	Parameters

	
	inputSymb: list

	the set of symbols for the input expression



	inputExpr: expr

	expression in sympy



	backend: optional

	the backend we want to use to compile



	compileType: optional

	defaults to False.  If True, return an extra output that informs
the end user of the method used to compile the equation, can be
one of (np, mpmath, sympy)







	Returns

	
	Compiled function taking arguments of the input symbols

	












	
compileExprAndFormat(inputSymb, inputExpr, backend=None, modules=None, outType=None)

	Compiles the expression given the symbols and determine which
type of output is it.  Transforms the output appropriately into
numpy


	Parameters

	
	inputSymb: list

	the set of symbols for the input expression



	inputExpr: expr

	expression in sympy



	backend: optional

	the backend we want to use to compile



	modules: optional

	in the event that f2py and Cython fails, which modules
do we want to try and compile against







	Returns

	
	Function determined from the input using closures.

	
















	
class pygom.model.ode_utils.CompileCanary

	Hold the need for (re-)compilation for various functions

A subclass of this should specify the states to watch

They may all be tripped to True using the trip() method
An individual may be reset with the reset() method or with
a direct assignment (they may not be tripped in this way).


	
reset(name)

	Reset a canary


	Parameters

	
	name: string

	the name of the canary to reset







	Returns

	
	None

	












	
trip()

	Trip all the canaries
Returns
——-
None










	
pygom.model.ode_utils.plot_det(solution, t, stateList=None, y=None, yStateList=None)

	Plot the results of the integration


	Parameters

	
	solution: :class:`numpy.ndarray`

	solution from the integration



	t: array like

	the vector of time where the integration output correspond to



	stateList: list

	name of the states, if available









Notes

If we have 5 states or more, it will always be arrange such
that it has 3 columns.






	
pygom.model.ode_utils.plot_stoc(solution, t, stochastic_model)

	Plot the results of a stocastic simulation


	Parameters

	
	solution: :class: list

	results of the stochastic simulation



	t: array like

	the vector of time where the integration output correspond to



	stochastic_model: :class: `pygom.SimulateOde`

	the model from which this simulation was generated









Notes

If we have 5 states or more, it will always be arrange such
that it has 3 columns.






	
pygom.model.ode_utils.check_array_type(x)

	Check to see if the type of input is suitable.  Only operate on one
or two dimension arrays


	Parameters

	
	x: array like

	which can be either a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list or tuple







	Returns

	
	x: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	checked and converted array














	
pygom.model.ode_utils.check_dimension(x, y)

	Compare the length of two array like objects.  Converting both to a numpy
array in the process if they are not already one.


	Parameters

	
	x: array like

	first array



	y: array like

	second array







	Returns

	
	x: numpy.array

	checked and converted first array



	y: numpy.array

	checked and converted second array














	
pygom.model.ode_utils.is_list_like(x)

	Test whether the input is a type that behaves like a list, such
as (list,tuple,np.ndarray)


	Parameters

	
	x:

	anything







	Returns

	
	bool:

	True if it belongs to one of the three expected type
(list,tuple,np.ndarray)














	
pygom.model.ode_utils.str_or_list(x)

	Test to see whether input is a string or a list.  If it
is a string, then we convert it to a list.


	Parameters

	
	x:

	str or list







	Returns

	
	x:

	x in list form

















          

      

      

    

  

    
      
          
            
  
ode_loss

These are basically the interfaces for pygom.loss.BaseLoss

The loss functions that “implements” the class BaseLoss, if Python
has such a thing.  Overrides the method _setLossType


	
class pygom.loss.ode_loss.SquareLoss(theta, ode, x0, t0, t, y, state_name, state_weight=None, target_param=None, target_state=None)

	The square loss function






	
class pygom.loss.ode_loss.NormalLoss(theta, ode, x0, t0, t, y, state_name, sigma=None, target_param=None, target_state=None)

	Realizations from a Normal distribution






	
class pygom.loss.ode_loss.PoissonLoss(theta, ode, x0, t0, t, y, state_name, target_param=None, target_state=None)

	Realizations from a Poisson distribution








calculations

The base class which contains has all the calculation implemented

To place everything about estimating the parameters of an ode model
under square loss in one single module.  Focus on the standard local
method which means obtaining the gradient and Hessian.


	
class pygom.loss.base_loss.BaseLoss(theta, ode, x0, t0, t, y, state_name, state_weight=None, target_param=None, target_state=None)

	This contains the base that stores all the information of an ode.


	Parameters

	
	theta: array like

	input value of the parameters



	ode: :class:`DeterministicOde`

	the ode class in this package



	x0: numeric

	initial time



	t0: numeric

	initial value



	t: array like

	time points where observations were made



	y: array like

	observations



	state_name: str

	the state which the observations came from



	state_weight: array like

	weight for the observations



	target_param: str or array like

	parameters that are not fixed



	target_state: str or array like

	states that are not fixed, applicable only when the initial
values are also of interest










	
adjoint(theta=None, full_output=False)

	Obtain the gradient given input parameters using the adjoint method.
Values of state variable are found using an univariate spline
interpolation between two observed time points where the internal
knots are explicitly defined.


	Parameters

	
	theta: array like

	input value of the parameters



	full_output: bool

	if True, also output the full set of adjoint values (over time)







	Returns

	
	grad: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	array of gradient



	infodictdict, only returned if full_output=True

	Dictionary containing additional output information







	key

	meaning





	‘resid’

	residuals given theta



	‘diff_loss’

	derivative of the loss function



	‘gradVec’

	gradient vectors



	‘adjVec’

	adjoint vectors



	‘interpolateInfo’

	info from integration over the interpolating
points



	‘solInterpolate’

	solution from the integration over the
interpolating points



	‘tInterpolate’

	interpolating time points















See also


	sensitivity()

	










	
cost(theta=None)

	Find the cost/loss given time points and the corresponding
observations.


	Parameters

	
	theta: array like

	input value of the parameters







	Returns

	
	numeric

	sum of the residuals squared










See also


	diff_loss()

	





Notes

Only works with a single target (state)






	
costIV(theta=None)

	Find the cost/loss given the parameters. The input theta
here is assumed to include both the parameters as well as the
initial values


	Parameters

	
	theta: array like

	parameters and guess of initial values of the states







	Returns

	
	numeric

	sum of the residuals squared










See also


	residualIV()

	










	
diff_loss(theta=None)

	Find the derivative of the loss function given time points
and the corresponding observations, with initial conditions


	Parameters

	
	theta: array like

	input value of the parameters







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	an array of residuals










See also


	cost()

	










	
diff_lossIV(theta=None)

	Find the derivative of the loss function w.r.t. the parameters
given time points and the corresponding observations, with
initial conditions.


	Parameters

	
	theta: array like

	parameters and initial values of the states







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	an array of result










See also


	costIV(), diff_loss()

	










	
fisher_information(theta=None, full_output=False, method=None)

	Obtain the Fisher information


	Parameters

	
	theta: array like

	input value of the parameters



	full_output: bool

	if additional output is required



	method: str, optional

	what method to use in the integrator







	Returns

	
	I: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	\(I(\theta)\) of the objective function



	infodictdict, only returned if full_output=True

	Dictionary containing additional output information







	key

	meaning





	‘state’

	intermediate values for the state (original ode)



	‘sens’

	intermediate values for the sensitivities by state,
parameters, i.e. \(x_{(i-1)p + j}\) is the element for
state \(i\) and parameter \(j\) with a total of
\(p\) parameters



	‘resid’

	residuals given theta



	‘info’

	output from the integration















See also


	sensitivity(), jtj()

	










	
fit(x, lb=None, ub=None, A=None, b=None, disp=False, full_output=False)

	Find the estimates given the data and an initial guess \(x\).
Note that there is no guarantee that the estimation procedure is
successful.  It is recommended to at least supply box constraints,
i.e. lower and upper bounds


	Parameters

	
	x: array like

	an initial guess



	lb: array like

	the lower bound elementwise \(lb_{i} <= x_{i}\)



	ub: array like

	upper bound elementwise \(x_{i} <= ub_{i}\)



	A: array like

	matrix \(A\) for the inequality \(Ax<=b\)



	b: array like

	vector \(b\) for the inequality \(Ax<=b\)







	Returns

	
	xhat: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	estimated value














	
gradient(theta=None, full_output=False)

	Returns the gradient calculated by solving the forward sensitivity
equation.  Identical to sensitivity() without the choice of
integration method


See also


	sensitivity()

	










	
hessian(theta=None, full_output=False, method=None)

	Obtain the Hessian using the forward forward sensitivities.


	Parameters

	
	theta: array like

	input value of the parameters



	full_output: bool

	if additional output is required



	method: str, optional

	what method to use in the integrator







	Returns

	
	Hessian: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Hessian of the objective function



	infodictdict, only returned if full_output=True

	Dictionary containing additional output information







	key

	meaning





	‘state’

	intermediate values for the state (original ode)



	‘sens’

	intermediate values for the sensitivities by state,
parameters, i.e. \(x_{(i-1)p + j}\) is the element for
state \(i\) and parameter \(j\) with a total of
\(p\) parameters



	‘hess’

	intermediate values for the hessian by state, parameter,
parameter, i.e. \(x_{(i-1)p^{2} + j + k}\) is the
element for state \(i\), parameter \(j\) and
parameter \(k\)



	‘resid’

	residuals given theta



	‘info’

	output from the integration















See also


	sensitivity()

	










	
jac(theta=None, sens_output=False, full_output=False, method=None)

	Obtain the Jacobian of the objective function given input parameters
using forward sensitivity method.


	Parameters

	
	theta: array like, optional

	input value of the parameters



	sens_output: bool, optional

	whether the full sensitivities is required; full_output overrides this
option when true



	full_output: bool, optional

	if additional output is required



	method: str, optional

	Choice between lsoda, vode and dopri5, the three integrator
provided by scipy.  Defaults to lsoda.







	Returns

	
	grad: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Jacobian of the objective function



	infodictdict, only returned if full_output=True

	Dictionary containing additional output information







	key

	meaning





	‘sens’

	intermediate values over the original ode and all the
sensitivities, by state, parameters



	‘resid’

	residuals given theta



	‘diff_loss’

	derivative of the loss function















See also


	sensitivity()

	










	
jacIV(theta=None, sens_output=False, full_output=False, method=None)

	Obtain the Jacobian of the objective function given input parameters
which include the current guess of the initial value using forward
sensitivity method.


	Parameters

	
	theta: array like, optional

	input value of the parameters



	sens_output: bool, optional

	whether the full sensitivities is required; full_output overrides this
option when true



	full_output: bool, optional

	if additional output is required



	method: str, optional

	Choice between lsoda, vode and dopri5, the three integrator
provided by scipy.  Defaults to lsoda







	Returns

	
	grad: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Jacobian of the objective function



	infodictdict, only returned if full_output=True

	Dictionary containing additional output information







	key

	meaning





	‘sens’

	intermediate values over the original ode and all the
sensitivities, by state, parameters



	‘resid’

	residuals given theta



	‘info’

	output from the integration















See also


	sensitivityIV()

	










	
jtj(theta=None, full_output=False, method=None)

	Obtain the approximation to the Hessian using the inner
product of the Jacobian.


	Parameters

	
	theta: array like

	input value of the parameters



	full_output: bool

	if additional output is required



	method: str, optional

	what method to use in the integrator







	Returns

	
	jtj: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	\(J^{\top}J\) of the objective function



	infodictdict, only returned if full_output=True

	Dictionary containing additional output information







	key

	meaning





	‘state’

	intermediate values for the state (original ode)



	‘sens’

	intermediate values for the sensitivities by state,
parameters, i.e. \(x_{(i-1)p + j}\) is the element for
state \(i\) and parameter \(j\) with a total of
\(p\) parameters



	‘resid’

	residuals given theta



	‘info’

	output from the integration















See also


	sensitivity()

	










	
plot()

	Plots the solution of all the states and the observed y values






	
residual(theta=None)

	Find the residuals given time points and the corresponding
observations, with initial conditions


	Parameters

	
	theta: array like

	input value of the parameters







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	an array of residuals










See also


	cost()

	





Notes

Makes a direct call to initialized loss object which has a
method called residual






	
residualIV(theta=None)

	Find the residuals given time points and the corresponding
observations, with initial conditions.


	Parameters

	
	theta: array like

	parameters and initial values of the states







	Returns

	
	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	an array of residuals










See also


	costIV(), residual()

	





Notes

Makes a direct call to residual() using the
initialized information






	
sens_to_grad(sens, diff_loss)

	Forward sensitivites to the gradient.


	Parameters

	
	sens: :class:`numpy.ndarray`

	forward sensitivities



	diff_loss: array like

	derivative of the loss function







	Returns

	
	g: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	gradient of the loss function














	
sens_to_jtj(sens, resid=None)

	forward sensitivites to \(J^{\top}J\) where \(J\) is the
Jacobian. The approximation to the Hessian.


	Parameters

	
	sens: :class:`numpy.ndarray`

	forward sensitivities



	resid: :class:`numpy.ndarray`, optional

	the residuals corresponding to the input sens







	Returns

	
	JTJ: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	An approximation to the Hessian using the inner product
of the Jacobian














	
sensitivity(theta=None, full_output=False, method=None)

	Obtain the gradient given input parameters using forward
sensitivity method.


	Parameters

	
	theta: array like

	input value of the parameters



	full_output: bool

	if additional output is required



	method: str, optional

	what method to use in the integrator







	Returns

	
	grad: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	array of gradient



	infodictdict, only returned if full_output=True

	Dictionary containing additional output information. Same output
as jac()









Notes

It calculates the gradient by calling jac()






	
sensitivityIV(theta=None, full_output=False, method=None)

	Obtain the gradient given input parameters (which include the current
guess of the initial conditions) using forward sensitivity method.


	Parameters

	
	theta: array like, optional

	input value of the parameters



	full_output: bool, optional

	if additional output is required



	method: str, optional

	what method to use in the integrator







	Returns

	
	grad: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	array of gradient



	infodictdict, only returned if full_output=True

	Dictionary containing additional output information







	key

	meaning





	‘sens’

	intermediate values over the original ode and all the
sensitivities, by state, parameters



	‘resid’

	residuals given theta



	‘info’

	output from the integration














Notes

It calculates the gradient by calling jacIV()






	
thetaCallBack(x)

	Print x, the parameters






	
thetaCallBack2(x, f)

	Print x and f where x is the parameter of interest
and f is the objective function


	Parameters

	
	x:

	parameters



	f:

	f(x)





















          

      

      

    

  

    
      
          
            
  
confidence_interval

Module that is used to calculate the confidence interval
given the estimated parameters


	
pygom.loss.confidence_interval.asymptotic(obj, alpha=0.05, theta=None, lb=None, ub=None)

	Finds the confidence interval at the \(\alpha\) level
under the \(\mathcal{X}^{2}\) assumption for the
likelihood


	Parameters

	
	obj: ode object

	an object initialized from BaseLoss



	alpha: numeric, optional

	confidence level, \(0 < \alpha < 1\).  Defaults to 0.05.



	theta: array like, optional

	the MLE parameters.  Defaults to None which then theta will be
inferred from the input obj



	lb: array like, optional

	expected lower bound



	ub: array like, optional

	expected upper bound







	Returns

	
	l: array like

	lower confidence interval



	u: array like

	upper confidence interval














	
pygom.loss.confidence_interval.profile(obj, alpha, theta=None, lb=None, ub=None, full_output=False)

	Finds the profile confidence interval at the
\(\alpha\) level under the \(\mathcal{X}^{2}\)
assumption for the likelihood


	Parameters

	
	obj: ode object

	an object initialized from BaseLoss



	alpha: numeric

	confidence level, \(0 < \alpha < 1\)



	theta: array like, optional

	the MLE parameters.  When None given, it tries to estimate the
optimal using methods provided by obj



	lb: array like, optional

	expected lower bound



	ub: array like, optional

	expected upper bound



	full_output: bool, optional

	if more output is desired







	Returns

	
	l: array like

	lower confidence interval



	u: array like

	upper confidence interval














	
pygom.loss.confidence_interval.bootstrap(obj, alpha=0.05, theta=None, lb=None, ub=None, iteration=0, full_output=False)

	Finds the confidence interval at the \(\alpha\) level
via bootstrap


	Parameters

	
	obj: ode object

	an object initialized from BaseLoss



	alpha: numeric, optional

	confidence level, \(0 < \alpha < 1\). Defaults to 0.05.



	theta: array like, optional

	the MLE parameters



	lb: array like, optional

	upper bound for the parameters



	ub: array like, optional

	lower bound for the parameters



	iteration: int, optional

	number of bootstrap samples, defaults to 0 which is interpreted as
\(min(2n, 100)\) where \(n\) is the number of data points.



	full_output: bool

	if the full set of estimates is required.







	Returns

	
	l: array like

	lower confidence interval



	u: array like

	upper confidence interval














	
pygom.loss.confidence_interval.geometric(obj, alpha=0.05, theta=None, method='jtj', geometry='o', full_output=False)

	Finds the geometric confidence interval under profiling
at the \(\alpha\) level the normal approximation


	Parameters

	
	obj: ode object

	an object initialized from BaseLoss



	alpha: numeric

	confidence level, \(0 < \alpha < 1\)



	theta: array like, optional

	the MLE parameters.  When None given, it tries to estimate the
optimal using methods provided by obj



	method: string

	construction of the covariance matrix.  jtj is the \(J^{\top}\)
where \(J\) is the Jacobian of the ode.  ‘hessian’ is the hessian
of the ode while ‘fisher’ is the fisher information found by
\(cov(\nabla_{\theta}\mathcal{L})\).



	geometry: string

	the two types of geometry defined in [Moolgavkar1987]. c geometry uses
the covariance at the maximum likelihood estimate
\(\hat{\theta}\), while the ‘o’ geometry is the covariance
defined at point \(\theta\).



	full_output: bool, optional

	If True then both the l_path and u_path will be outputted, else only
the point estimates of l and u







	Returns

	
	l: array like

	lower confidence interval



	u: array like

	upper confidence interval



	l_path: list

	path from \(\hat{\theta}\) to the lower \(1 - \alpha/2\)
point for all parameters



	u_path: list

	same as l_path but for the upper confidence interval

















          

      

      

    

  

    
      
          
            
  
loss_type

The different loss types.  Such as thought based on
parametric distributions.


	
class pygom.loss.loss_type.Square(y, weights=None)

	Square loss object


	Parameters

	
	y: array like

	observations










	
diff2Loss(yhat)

	Twice derivative of the square loss.  Which is simply 2.


	Parameters

	
	yhat: array like

	observations







	Returns

	
	array with values of 2:

	either a scalar, vector or matrix depending on the shape of
of the input yhat














	
diff_loss(yhat)

	Derivative under square loss.  Assuming that we are solving
the minimization problem i.e. our objective function is the
negative of the log-likelihood


	Parameters

	
	yhat: array like

	observation







	Returns

	
	\(-2(y_{i} - \hat{y}_{i})\)

	












	
loss(yhat)

	Loss under square loss.  Not really saying much here


	Parameters

	
	yhat: array like

	observation







	Returns

	
	\(\sum_{i=1}^{n} (\hat{y} - y)^{2}\)

	












	
residual(yhat)

	Raw residuals if no weights was initialized, else
the weighted residuals


	Parameters

	
	yhat: array like

	observation







	Returns

	
	\(y_{i} - \hat{y}_{i}\)

	
















	
class pygom.loss.loss_type.Normal(y, sigma=1.0)

	Normal distribution loss object


	Parameters

	
	y: array like

	observation



	sigma: float

	standard deviation










	
diff2Loss(yhat)

	Twice derivative of the normal loss.


	Parameters

	
	yhat: array like

	observations







	Returns

	
	s: array like

	inverse of the variance with shape = yhat.shape














	
diff_loss(yhat)

	Derivative of the loss function which is
\(\sigma^{-1}(y - \hat{y})\)


	Parameters

	
	yhat: array like

	observation







	Returns

	
	r: array like

	\(\nabla \mathcal{L}(\hat{y}, y)\)














	
loss(yhat)

	The loss under a normal distribution.  Defined as the
negative log-likelihood here.


	Parameters

	
	yhat: array like

	observation







	Returns

	
	negative log-likelihood, \(\mathcal{L}(\hat{y},y)\)

	












	
residual(yhat)

	Residuals under a normal loss


	Parameters

	
	yhat: array like

	observation







	Returns

	
	r: array like

	residuals


















	
class pygom.loss.loss_type.Poisson(y)

	Poisson distribution loss object


	Parameters

	
	y: array like

	observation










	
diff2Loss(yhat)

	Twice derivative of the Poisson loss.


	Parameters

	
	yhat: array like

	observations







	Returns

	
	s: array like

	\(\frac{y}{\hat{y}^{2}}\) with shape = yhat.shape














	
diff_loss(yhat)

	Derivative of the loss function, \(1 - y\hat{y}^{-1}\)


	Parameters

	
	yhat: array like

	observation







	Returns

	
	\(\nabla \mathcal{L}(\hat{y},y)\)

	












	
loss(yhat)

	The loss under a Poisson distribution.  Defined as the
negative log-likelihood here.


	Parameters

	
	yhat: array like

	observation







	Returns

	
	negative log-likelihood, \(\mathcal{L}(\hat{y}, y)\)

	












	
residual(yhat)

	Raw residuals


	Parameters

	
	yhat: array like

	observation







	Returns

	
	r: array like

	residuals





















          

      

      

    

  

    
      
          
            
  
get_init


	
pygom.loss.get_init.cost_grad_interpolant(ode, spline_list, t, theta)

	Returns the cost (sum of squared residuals) and the gradient between the
first derivative of the interpolant and the function of the ode


	Parameters

	
	ode: :class:`.DeterministicOde`

	an ode object



	spline_list: list

	list of scipy.interpolate.UnivariateSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline]



	t: array like

	time



	theta: array list

	parameter value







	Returns

	
	cost: double

	sum of squared residuals



	g:

	gradient of the squared residuals














	
pygom.loss.get_init.cost_interpolant(ode, spline_list, t, theta, vec=True, aggregate=True)

	Returns the cost (sum of squared residuals) between the first
derivative of the interpolant and the function of the ode


	Parameters

	
	ode: :class:`.DeterministicOde`

	an ode object



	spline_list: list

	list of scipy.interpolate.UnivariateSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline]



	t: array like

	time



	theta: array list

	paramter value



	vec: bool, optional

	if the matrix should be flattened to be a vector



	aggregate: bool, optional

	sum the vector/matrix







	Returns

	
	cost: double

	sum of squared residuals














	
pygom.loss.get_init.cost_sample(ode, fxApprox, xApprox, t, theta, vec=True, aggregate=True)

	Returns the cost (sum of squared residuals) between the first
derivative of the interpolant and the function of the ode using
samples at time points t.


	Parameters

	
	ode: :class:`.DeterministicOde`

	an ode object



	fxApprox: list

	list of approximated values for the first derivative



	xApprox: list

	list of approximated values for the states



	t: array like

	time



	theta: array list

	parameter value



	vec: bool, optional

	if the matrix should be flattened to be a vector.



	aggregate: bool/str, optional

	sum the vector/matrix.  If this is equals to ‘int’ then the Simpsons
rule is applied to the samples.  Also changes the behaviour of vec,
where True outputs a vector where the elements contain the values of
the integrand on each of the dimensions of the ode.  False returns
the sum of this vector, a scalar.







	Returns

	
	r: array list

	the cost or the residuals if vec is True










See also


	residual_sample()

	










	
pygom.loss.get_init.get_init(y, t, ode, theta=None, full_output=False)

	Get an initial guess of theta given the observations y and the
corresponding time points t.


	Parameters

	
	y: :array like

	observed values



	t: array like

	time



	ode: :class:`.DeterministicOde`

	an ode object



	theta: array like

	parameter value



	full_output: bool, optional

	True if the optimization result should be returned. Defaults to False.







	Returns

	
	theta: array like

	a guess of the parameters














	
pygom.loss.get_init.grad_sample(ode, fxApprox, xApprox, t, theta, vec=False, output_residual=False)

	Returns the gradient of the objective value using the state
values of the interpolant given samples at time points t. Note
that the parameters taken here is chosen to be same as
cost_sample() for convenience.


	Parameters

	
	ode: :class:`.DeterministicOde`

	an ode object



	fxApprox: list

	list of approximated values for the first derivative



	xApprox: list

	list of approximated values for the states



	t: array like

	time



	theta: array list

	parameter value



	vec: bool, optional

	if the matrix should be flattened to be a vector



	output_residual: bool, optional

	if True, then the residuals will be returned as an
additional argument







	Returns

	
	g: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	gradient of the objective function










See also


	jac_sample()

	










	
pygom.loss.get_init.interpolate(solution, t, s=0)

	Interpolate the solution of the ode given the time points
and a suitable smoothing vector using univariate spline


	Parameters

	
	solution: :class:`numpy.ndarray`

	f(t) of the ode with the rows correspond to time



	t: array like

	time



	s: smoothing scalar, optional

	greater or equal to zero







	Returns

	
	splineList: list

	of scipy.interpolate.UnivariateSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline]














	
pygom.loss.get_init.jac_sample(ode, fxApprox, xApprox, t, theta, vec=True)

	Returns the Jacobian of the objective value using the state
values of the interpolant given samples at time points t. Note
that the parameters taken here is chosen to be same as
cost_sample() for convenience.


	Parameters

	
	ode: :class:`.DeterministicOde`

	an ode object



	fxApprox: list

	list of approximated values for the first derivative



	xApprox: list

	list of approximated values for the states



	t: array like

	time



	theta: array list

	parameter value



	vec: bool, optional

	if the matrix should be flattened to be a vector







	Returns

	
	r: array list

	the residuals










See also


	cost_sample()

	










	
pygom.loss.get_init.residual_interpolant(ode, spline_list, t, theta, vec=True)

	Returns the residuals between the first derivative of the
interpolant and the function of the ode


	Parameters

	
	ode: :class:`.DeterministicOde`

	an ode object



	spline_list: list

	list of scipy.interpolate.UnivariateSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline]



	t: array like

	time



	theta: array list

	parameter value



	vec: bool, optional

	if the matrix should be flattened to be a vector



	aggregate: bool, optional

	sum the vector/matrix







	Returns

	
	r: array list

	the residuals














	
pygom.loss.get_init.residual_sample(ode, fxApprox, xApprox, t, theta, vec=True)

	Returns the residuals between the first derivative of the
interpolant and the function of the ode using samples at
time points t.


	Parameters

	
	ode: :class:`.DeterministicOde`

	an ode object



	fxApprox: list

	list of approximated values for the first derivative



	xApprox: list

	list of approximated values for the states



	t: array like

	time



	theta: array list

	parameter value



	vec: bool, optional

	if the matrix should be flattened to be a vector







	Returns

	
	r: array list

	the residuals










See also


	cost_sample()

	













          

      

      

    

  

    
      
          
            
  
References


	Aron1984

	Seasonality and period-doubling bifurcations in an epidemic model,
Joan L. Aron and Ira B. Schwartz, Journal of Theoretical Biology, Volume 110,
Issue 4, page 665-679, 1984



	Brauer2008

	Mathematical Epidemiology, Lecture Notes in Mathematics,
Fred Brauer, Springer 2008



	Cao2006

	Efficient step size selection for the tau-leaping simulation
method, Yang Cao et el., The Journal of Chemical Physics, Volume 124,
Issue 4, page 044109, 2006



	Finnie2016

	EpiJSON: A unified data-format for epidemiology,
Thomas Finnie et al., Epidemics, Volume 15, page 20-26, 2016



	FitzHugh1961

	Impulses and Physiological States in Theoretical Models of
Nerve Membrane, Richard FitzHugh, Biophysical Journal, Volume 1, Issue 6,
page 445-466, 1961



	Gillespie1977

	Exact stochastic simulation of coupled chemical reactions,
Danial T. Gillespie, The Journal of Physical Chemistry, Volume 81,
Issue 25, page 2340-2361, 1977



	Girolami2011

	Riemann manifold Langevin and Hamiltonian Monte Carlo methods,
Mark Girolami and Ben Calderhead, Journal of the Royal Statistical Society
Series B, Volume 73, Issue 2, page 123-214, 2011.



	Hethcote1973

	Asymptotic behavior in a deterministic epidemic model,
Herbert W. Hethcote, Bulletin of Mathematical Biology, Volume 35,
page 607-614, 1973



	Legrand2007

	Understanding the dynamics of Ebola epidemics,
J. Legrand et al. Epidemiology and Infection, Volume 135, Issue 4,
page 610-621, 2007



	Lloyd1996

	Spatial Heterogeneity in Epidemic Models, A.L. Lloyd and
R.M. May, Journal of Theoretical Biology, Volume 179,
Issue 1, page 1-11, 1996



	Lorenz1963

	Deterministic Nonperiodic Flow, Edward N. Lorenz, Journal of
the Atmospheric Sciences, Volume 20, Issue 2, page 130-141, 1963



	Lotka1920

	Analytical Note on Certain Rhythmic Relations in Organic Systems,
Alfred J. Lotka, Proceedings of the National Academy of Sciences of the
United States of America, Volume 7, Issue 7, page 410-415, 1920



	Moolgavkar1987

	Confidence Regions for Parameters of the Proportional
Hazards Model: A Simulation Study, S.H. Moolgavkar and D.J. Venzon,
Scandianvia Journal of Statistics, Volume 14, page 43-56, 1987



	Press2007

	Numerical Recipes 3rd Edition: The Art of Scientific Computing,
W.H. Press et al., Cambridge University Press, 2007



	Ramsay2007

	Parameter estimation for differential equations: a generalized
smoothing approach, Journal of the Royal Statistical Society Series B,
James O. Ramsay et al., Volume 69, Issue 5, page 741-796, 2007



	Raue2009

	Structural and Practical Identifiability Analysis of Partially
Observed Dynamical Models by Exploiting the Profile Likelihood,
A. Raue et al., Bioinformatics, Volume 25, Issue 15, page 1923-1929, 2009



	Robertson1966

	The solution of a set of reaction rate equations,
H.H. Robertson, Academic Press, page 178-182, 1966



	vanderpol1926

	On Relaxed Oscillations, Balthasar van der Pol, The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
Volume 2, Issue 11, page 978-992, 1926



	Venzon1988

	A Method for Computing Profile-Likelihood-Based Confidence
Intervals, D.J. Venzon and S.H. Moolgavkar, Journal of the Royal Statistical
Society Series C (Applied Statistics), Volume 37, Issue 1, page 87-94, 1988









          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _images/bvp1_solution_plot.png
2.0

15

10

05

0.0

-1.0

-15

2.0

yo yl
2
1
0
-2
2 2
Time Time






_images/bvp2_random_guess_plot.png
1.00

075

050

025

0.00

-0.25

-0.50

-0.75

y0 yl tau

4

30
3

25
2

1 2.0

o 15
-1

10
-2

[
-3

0.0

2 2 2
Time Time Time






_images/bvp1_random_guess_plot.png
1.00

075

050

025

0.00

-0.25

-0.50

-0.75

-1.00

¥0 y1
10
05
00
-0.5
-10
-15
2 2
Time Time






_images/graphviz-46f71107bcb68ea35413b7e79984d17d175b16ba.png





_images/graphviz-92b16b12fa47339f1b4b0b260afc3a978b332a51.png
O OO





_images/bvp2_solution_plot.png
1.00

075

050

025

0.00

-0.25

-0.50

-0.75

y0 yl tau
30
3
2 25
1 2.0
0 15
-1
10
-2
[
-3
0.0
2 2 2
Time Time Time






_images/graphviz-11601552059365967f63c4ecbb3e3057da07c76e.png
Original transitions

-SB(L + SAYN





_images/sir_transition_graph.png
50

BrSH

50

100 150

200

250

300

350






_images/sir_unrolled_transition_graph.png
50

100

0 100 200 300 400





_images/sir_unrolled_transition_graph_hard.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to the documentation of pygom
        


        		
          Getting started
          
            		
              What this package does
            


            		
              Obtaining the package
            


            		
              Testing the package
            


          


        


        		
          Transition Object
          
            		
              Defining the equations
            


            		
              Model Addition
            


            		
              Transition type
            


          


        


        		
          Stochastic representation of ode
          
            		
              Stochastic Parameter
            


            		
              Continuous Markov Representation
            


            		
              Repeatable Simulation
            


          


        


        		
          Convert ODE into transitions
          
            		
              Simple Problem
            


            		
              ODE With Birth and Death Process
            


            		
              Hard Problem
            


          


        


        		
          Solving Boundary Value Problems
          
            		
              Simple model 1
            


            		
              Simple model 2
            


          


        


        		
          Example: Parameter Estimation 1
          
            		
              Estimation under square loss
              
                		
                  SIR Model
                


                		
                  Difference in gradient
                


                		
                  Optimized result
                


              


            


          


        


        		
          Pre-defined Example common_models
        


        		
          Frequent asked questions
          
            		
              Code runs slowly
            


            		
              Why not compile the numeric computation form sympy against Theano
            


            		
              Why not use mpmath library throughout?
            


            		
              Computing the gradient using SquareLoss is slow
            


            		
              Can you not convert a non-autonumous system to an autonomous system for me automatically
            


            		
              Getting the sensitivities from SquareLoss did not get a speed up when I used a restricted set of parameters
            


            		
              Why do not have the option to obtain gradient via complex differencing
            


          


        


        		
          Code documentations
          
            		
              model
              
                		
                  common_models
                


                		
                  transition
                


                		
                  deterministic
                


                		
                  stochastic
                


                		
                  epi_analysis
                


                		
                  ode_utils
                


              


            


            		
              loss
              
                		
                  ode_loss
                


                		
                  calculations
                


                		
                  confidence_interval
                


                		
                  loss_type
                


                		
                  get_init
                


              


            


          


        


        		
          References
        


      


    
  

_images/stochastic_param_single.png
100

100

100





_images/stochastic_process.png
200

150

100

+2.362e6

70

60

20

10

140

20

00

80

60

20

10

10

10






_images/stochastic_param_all.png
100

100

100





_images/stochastic_param_compare.png
0.10

0.05

0.00

~0.05

-0.10

10

o5

00

05

0 100

100

ho

100






_static/comment-bright.png





_images/stochastic_process_compare_large_n_curves.png
2400000

2200000

2000000

1800000

1600000

1400000

1200000

1000000

0 100 0 100

100






_static/ajax-loader.gif





_static/comment-close.png





_static/comment.png





_static/down-pressed.png





_static/file.png





_static/minus.png





_static/down.png





_static/up-pressed.png





_static/up.png





_static/plus.png





